Transition metal oxides as hole-transporting materials in organic semiconductor and hybrid perovskite based solar cells

logo

SCIENCE CHINA Chemistry, Volume 60, Issue 4: 472-489(2017) https://doi.org/10.1007/s11426-016-9023-5

Transition metal oxides as hole-transporting materials in organic semiconductor and hybrid perovskite based solar cells

More info
  • ReceivedDec 16, 2016
  • AcceptedFeb 20, 2017
  • PublishedMar 14, 2017

Abstract

Organic polymer solar cells (OSCs) and organic-inorganic hybrid perovskite solar cells (PSCs) have achieved notable progress over the past several years. A central topic in these fields is exploring electronically efficient, stable and effective hole-transporting layer (HTL) materials. The goal is to enhance hole-collection ability, reduce charge recombination, increase built-in voltage, and hence improve the performance as well as the device stability. Transition metal oxides (TMOs) semiconductors such as NiOx, CuOx, CrOx, MoOx, WO3, and V2O5, have been widely used as HTLs in OSCs. These TMOs are naturally adopted into PSC as HTLs and shows their importance. There are similarities, and also differences in applying TMOs in these two types of main solution processed solar cells. This concise review is on the recent developments of transition metal oxide HTL in OSCs and PSCs. The paper starts from the discussion of the cation valence and electronic structure of the transition metal oxide materials, followed by analyzing the structure-property relationships of these HTLs, which we attempt to give a systematic introduction about the influences of their cation valence, electronic structure, work function and film property on device performance.


Funded by

Natural Science Foundation of Hubei Province(2014CFB275)

Project of Strategic Importance provided by The Hong Kong Polytechnic University(1-ZE29)

National Natural Science Foundation of China(61376013)

Special(2016T90724)

National High Technology Research and Development Program(2015AA050601)


Acknowledgment

This work was supported by the Project of Strategic Importance provided by The Hong Kong Polytechnic University (1-ZE29), the Natural Science Foundation of Hubei Province (2014CFB275), the Special (2016T90724, 2014T70735) and General (2015M572187, 2013M531737) Postdoctoral Science Foundation of China, the National High Technology Research and Development Program (2015AA050601), and the National Natural Science Foundation of China (61376013, 91433203, 11674252).


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Günes S, Neugebauer H, Sariciftci NS. Chem Rev, 2007, 107: 1324-1338 CrossRef PubMed Google Scholar

[2] Yang T, Wang M, Cao Y, Huang F, Huang L, Peng J, Gong X, Cheng SZD, Cao Y. Adv Energy Mater, 2012, 2: 523-527 CrossRef Google Scholar

[3] Li G, Zhu R, Yang Y. Nat Photon, 2012, 6: 153-161 CrossRef ADS Google Scholar

[4] Zhang S, Ye L, Zhao W, Yang B, Wang Q, Hou J. Sci China Chem, 2015, 58: 248-256 CrossRef Google Scholar

[5] Dou L, You J, Hong Z, Xu Z, Li G, Street RA, Yang Y. Adv Mater, 2013, 25: 6642-6671 CrossRef PubMed Google Scholar

[6] Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W, Yan H. Nat Energy, 2016, 1: 15027 CrossRef ADS Google Scholar

[7] Kim J, Hong Z, Li G, Song TB, Chey J, Lee YS, You J, Chen CC, Sadana DK, Yang Y. Nat Commun, 2015, 6: 6391 CrossRef PubMed ADS Google Scholar

[8] Chen CC, Chang WH, Yoshimura K, Ohya K, You J, Gao J, Hong Z, Yang Y. Adv Mater, 2014, 26: 5670-5677 CrossRef PubMed Google Scholar

[9] Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H. Nat Commun, 2014, 5: 5293 CrossRef PubMed ADS Google Scholar

[10] Xie F, Choy WCH, Wang C, Li X, Zhang S, Hou J. Adv Mater, 2013, 25: 2051-2055 CrossRef PubMed Google Scholar

[11] http://www.nrel.gov/pv/assets/images/efficiency_chart.jpg. Accessed on 2017-01-20. Google Scholar

[12] Kojima A, Teshima K, Shirai Y, Miyasaka T. J Am Chem Soc, 2009, 131: 6050-6051 CrossRef PubMed Google Scholar

[13] Zhou H, Chen Q, Li G, Luo S, Song T, Duan HS, Hong Z, You J, Liu Y, Yang Y. Science, 2014, 345: 542-546 CrossRef PubMed ADS Google Scholar

[14] Yang WS, Noh JH, Jeon NJ, Kim YC, Ryu S, Seo J, Seok SI. Science, 2015, 348: 1234-1237 CrossRef PubMed ADS Google Scholar

[15] Xing G, Mathews N, Sun S, Lim SS, Lam YM, Gr?tzel M, Mhaisalkar S, Sum TC. Science, 2013, 342: 344-347 CrossRef PubMed ADS Google Scholar

[16] Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP, Leijtens T, Herz LM, Petrozza A, Snaith HJ. Science, 2013, 342: 341-344 CrossRef PubMed ADS Google Scholar

[17] Bi D, Tress W, Dar MI, Gao P, Luo J, Renevier C, Schenk K, Abate A, Giordano F, Correa Baena JP, Decoppet JD, Zakeeruddin SM, Nazeeruddin MK, Gra tzel M, Hagfeldt A. Sci Adv, 2016, 2: e1501170 CrossRef PubMed ADS Google Scholar

[18] Na SI, Wang G, Kim SS, Kim TW, Oh SH, Yu BK, Lee T, Kim DY. J Mater Chem, 2009, 19: 9045 CrossRef Google Scholar

[19] Moulé AJ, Meerholz K. Adv Funct Mater, 2009, 19: 3028-3036 CrossRef Google Scholar

[20] Campoy-Quiles M, Ferenczi T, Agostinelli T, Etchegoin PG, Kim Y, Anthopoulos TD, Stavrinou PN, Bradley DDC, Nelson J. Nat Mater, 2008, 7: 158-164 CrossRef PubMed ADS Google Scholar

[21] Salim T, Sun S, Abe Y, Krishna A, Grimsdale AC, Lam YM. J Mater Chem A, 2015, 3: 8943-8969 CrossRef Google Scholar

[22] Sepalage GA, Meyer S, Pascoe A, Scully AD, Huang F, Bach U, Cheng YB, Spiccia L. Adv Funct Mater, 2015, 25: 5650-5661 CrossRef Google Scholar

[23] Zhang J, Zhang M, Sun RQ, Wang X. Angew Chem, 2012, 124: 10292-10296 CrossRef Google Scholar

[24] Yao C, Xu X, Wang J, Shi L, Li L. ACS Appl Mater Interfaces, 2013, 5: 1100-1107 CrossRef PubMed Google Scholar

[25] Ma H, Yip HL, Huang F, Jen AKY. Adv Funct Mater, 2010, 20: 1371-1388 CrossRef Google Scholar

[26] Steim R, Kogler FR, Brabec CJ. J Mater Chem, 2010, 20: 2499-2512 CrossRef Google Scholar

[27] J?rgensen M, Norrman K, Krebs FC. Sol Energy Mater Sol Cells, 2008, 92: 686-714 CrossRef Google Scholar

[28] Norrman K, Gevorgyan SA, Krebs FC. ACS Appl Mater Interfaces, 2009, 1: 102-112 CrossRef PubMed Google Scholar

[29] Norrman K, Madsen MV, Gevorgyan SA, Krebs FC. J Am Chem Soc, 2010, 132: 16883-16892 CrossRef PubMed Google Scholar

[30] Sch?fer S, Petersen A, Wagner TA, Kniprath R, Lingenfelser D, Zen A, Kirchartz T, Zimmermann B, Würfel U, Feng X, Mayer T. Phys Rev B, 2011, 83: 165311 CrossRef ADS Google Scholar

[31] You J, Yang YM, Hong Z, Song TB, Meng L, Liu Y, Jiang C, Zhou H, Chang WH, Li G, Yang Y. Appl Phys Lett, 2014, 105: 183902 CrossRef ADS Google Scholar

[32] Kaltenbrunner M, Adam G, G?owacki ED, Drack M, Schw?diauer R, Leonat L, Apaydin DH, Groiss H, Scharber MC, White MS, Sariciftci NS, Bauer S. Nat Mater, 2015, 14: 1032-1039 CrossRef PubMed ADS Google Scholar

[33] Xiao J, Shi J, Li D, Meng Q. Sci China Chem, 2015, 58: 221-238 CrossRef Google Scholar

[34] Wei J, Zhao Y, Li H, Li G, Pan J, Xu D, Zhao Q, Yu D. J Phys Chem Lett, 2014, 5: 3937-3945 CrossRef PubMed Google Scholar

[35] O'Regan BC, Barnes PRF, Li X, Law C, Palomares E, Marin-Beloqui JM. J Am Chem Soc, 2015, 137: 5087-5099 CrossRef PubMed Google Scholar

[36] Christians JA, Miranda Herrera PA, Kamat PV. J Am Chem Soc, 2015, 137: 1530-1538 CrossRef PubMed Google Scholar

[37] Qin PL, Lei HW, Zheng XL, Liu Q, Tao H, Yang G, Ke WJ, Xiong LB, Qin MC, Zhao XZ, Fang GJ. Adv Mater Interfaces, 2016, 3: 1500799 CrossRef Google Scholar

[38] Park JH, Park JI, Kim DH, Kim JH, Kim JS, Lee JH, Sim M, Lee SY, Cho K. J Mater Chem, 2010, 20: 5860-5865 CrossRef Google Scholar

[39] Jung JW, Jo WH. Adv Funct Mater, 2010, 20: 2355-2363 CrossRef Google Scholar

[40] Park JH, Kim JS, Lee JH, Lee WH, Cho K. J Phys Chem C, 2009, 113: 17579-17584 CrossRef Google Scholar

[41] Chen LM, Xu Z, Hong Z, Yang Y. J Mater Chem, 2010, 20: 2575-2598 CrossRef Google Scholar

[42] Xu Y, Shi J, Lv S, Zhu L, Dong J, Wu H, Xiao Y, Luo Y, Wang S, Li D, Li X, Meng Q. ACS Appl Mater Interfaces, 2014, 6: 5651-5656 CrossRef PubMed Google Scholar

[43] Qin P, Tetreault N, Dar MI, Gao P, McCall KL, Rutter SR, Ogier SD, Forrest ND, Bissett JS, Simms MJ, Page AJ, Fisher R, Gr?tzel M, Nazeeruddin MK. Adv Energy Mater, 2015, 5: 1400980 CrossRef Google Scholar

[44] Heo JH, Im SH, Noh JH, Mandal TN, Lim CS, Chang JA, Lee YH, Kim H, Sarkar A, Nazeeruddin MK, Gr?tzel M, Seok SI. Nat Photon, 2013, 7: 486-491 CrossRef ADS Google Scholar

[45] Yang G, Tao H, Qin P, Ke W, Fang G. J Mater Chem A, 2016, 4: 3970-3990 CrossRef Google Scholar

[46] Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Gr?tzel M, Park NG. Sci Rep, 2012, 2: 591-598 CrossRef PubMed ADS Google Scholar

[47] Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ. Science, 2012, 338: 643-647 CrossRef PubMed ADS Google Scholar

[48] Xu B, Sheibani E, Liu P, Zhang J, Tian H, Vlachopoulos N, Boschloo G, Kloo L, Hagfeldt A, Sun L. Adv Mater, 2014, 26: 6629-6634 CrossRef PubMed Google Scholar

[49] Zhu Z, Bai Y, Zhang T, Liu Z, Long X, Wei Z, Wang Z, Zhang L, Wang J, Yan F, Yang S. Angew Chem Int Ed, 2014: 12571–12575. Google Scholar

[50] Leguy AMA, Hu Y, Campoy-Quiles M, Alonso MI, Weber OJ, Azarhoosh P, van Schilfgaarde M, Weller MT, Bein T, Nelson J, Docampo P, Barnes PRF. Chem Mater, 2015, 27: 3397-3407 CrossRef Google Scholar

[51] Irwin MD, Buchholz DB, Hains AW, Chang RPH, Marks TJ. Proc Natl Acad Sci USA, 2008, 105: 2783-2787 CrossRef ADS Google Scholar

[52] Xu Q, Wang F, Tan Z, Li L, Li S, Hou X, Sun G, Tu X, Hou J, Li Y. ACS Appl Mater Interfaces, 2013, 5: 10658-10664 CrossRef PubMed Google Scholar

[53] Qin P, Fang G, Sun N, Fan X, Zheng Q, Chen F, Wan J, Zhao X. Thin Solid Films, 2011, 519: 4334-4341 CrossRef ADS Google Scholar

[54] Qin P, Fang G, Cheng F, Ke W, Lei H, Wang H, Zhao X. ACS Appl Mater Interfaces, 2014, 6: 2963-2973 CrossRef PubMed Google Scholar

[55] Qin P, Fang G, Ke W, Cheng F, Zheng Q, Wan J, Lei H, Zhao X. J Mater Chem A, 2014, 2: 2742-2756 CrossRef Google Scholar

[56] Shrotriya V, Li G, Yao Y, Chu CW, Yang Y. Appl Phys Lett, 2006, 88: 073508 CrossRef ADS Google Scholar

[57] Li G, Chu CW, Shrotriya V, Huang J, Yang Y. Appl Phys Lett, 2006, 88: 253503 CrossRef ADS Google Scholar

[58] Meyer J, Hamwi S, Kr?ger M, Kowalsky W, Riedl T, Kahn A. Adv Mater, 2012, 24: 5408-5427 CrossRef PubMed Google Scholar

[59] Manders JR, Tsang SW, Hartel MJ, Lai TH, Chen S, Amb CM, Reynolds JR, So F. Adv Funct Mater, 2013, 23: 2993-3001 CrossRef Google Scholar

[60] Ohta H, Kamiya M, Kamiya T, Hirano M, Hosono H. Thin Solid Films, 2003, 445: 317-321 CrossRef ADS Google Scholar

[61] Fujimori A, Minami F. Phys Rev B, 1984, 30: 957-971 CrossRef ADS Google Scholar

[62] Ai L, Fang G, Yuan L, Liu N, Wang M, Li C, Zhang Q, Li J, Zhao X. Appl Surface Sci, 2008, 254: 2401-2405 CrossRef ADS Google Scholar

[63] Jeng JY, Chen KC, Chiang TY, Lin PY, Tsai TD, Chang YC, Guo TF, Chen P, Wen TC, Hsu YJ. Adv Mater, 2014, 26: 4107-4113 CrossRef PubMed Google Scholar

[64] St Uhlenbrock, Scharfschwerdt C, Neumann M, Illing G, Freund HJ. J Phys Condens Mat, 1992, 4: 7973. Google Scholar

[65] Kim KS, Winograd N. Surf Sci, 1974, 43: 625-643 CrossRef ADS Google Scholar

[66] Sasi B, Gopchandran KG. Nanotechnology, 2007, 18: 115613 CrossRef ADS Google Scholar

[67] Jiang F, Choy WCH, Li X, Zhang D, Cheng J. Adv Mater, 2015, 27: 2930-2937 CrossRef PubMed Google Scholar

[68] Ratcliff EL, Meyer J, Steirer KX, Garcia A, Berry JJ, Ginley DS, Olson DC, Kahn A, Armstrong NR. Chem Mater, 2011, 23: 4988-5000 CrossRef Google Scholar

[69] Han SY, Lee DH, Chang YJ, Ryu SO, Lee TJ, Chang CH. J Electrochem Soc, 2006, 153: 382-385 CrossRef Google Scholar

[70] Steirer KX, Ndione PF, Widjonarko NE, Lloyd MT, Meyer J, Ratcliff EL, Kahn A, Armstrong NR, Curtis CJ, Ginley DS, Berry JJ, Olson DC. Adv Energy Mater, 2011, 1: 813-820 CrossRef Google Scholar

[71] Zhang J, Wang J, Fu Y, Zhang B, Xie Z. RSC Adv, 2015, 5: 28786-28793 CrossRef Google Scholar

[72] Al-Jawhari HA, Caraveo-Frescas JA, Hedhili MN, Alshareef HN. ACS Appl Mater Interfaces, 2013, 5: 9615-9619 CrossRef PubMed Google Scholar

[73] Fortunato E, Figueiredo V, Barquinha P, Elamurugu E, Barros R, Gon?alves G, Park SHK, Hwang CS, Martins R. Appl Phys Lett, 2010, 96: 192102 CrossRef ADS Google Scholar

[74] Wagner CD, Riggs WM, Davis LE, Moulder JE. Handbook of X-Ray Photoelectron Spectroscopy. Eden Prairie, Minnesota: Perkin-Elmer Corporation, 1979. Google Scholar

[75] Lee SW, Lee YS, Heo J, Siah SC, Chua D, Brandt RE, Kim SB, Mailoa JP, Buonassisi T, Gordon RG. Adv Energy Mater, 2014, 4: 1301916 CrossRef Google Scholar

[76] Zuo C, Ding L. Small, 2015, 11: 5528-5532 CrossRef PubMed Google Scholar

[77] Murali DS, Kumar S, Choudhary RJ, Wadikar AD, Jain MK, Subrahmanyam A. AIP Adv, 2015, 5: 047143 CrossRef ADS Google Scholar

[78] Wong KH, Ananthanarayanan K, Luther J, Balaya P. J Phys Chem C, 2012, 116: 16346-16351 CrossRef Google Scholar

[79] Greiner MT, Chai L, Helander MG, Tang WM, Lu ZH. Adv Funct Mater, 2013, 23: 215-226 CrossRef Google Scholar

[80] H?fle S, Bruns M, Str?ssle S, Feldmann C, Lemmer U, Colsmann A. Adv Mater, 2013, 25: 4113-4116 CrossRef PubMed Google Scholar

[81] Jasieniak JJ, Seifter J, Jo J, Mates T, Heeger AJ. Adv Funct Mater, 2012, 22: 2594-2605 CrossRef Google Scholar

[82] Zilberberg K, Trost S, Meyer J, Kahn A, Behrendt A, Lützenkirchen-Hecht D, Frahm R, Riedl T. Adv Funct Mater, 2011, 21: 4776-4783 CrossRef Google Scholar

[83] Hammond SR, Meyer J, Widjonarko NE, Ndione PF, Sigdel AK, Garcia A, Miedaner A, Lloyd MT, Kahn A, Ginley DS, Berry JJ, Olson DC. J Mater Chem, 2012, 22: 3249-3254 CrossRef Google Scholar

[84] Tokmoldin N, Griffiths N, Bradley DDC, Haque SA. Adv Mater, 2009, 21: 3475-3478 CrossRef Google Scholar

[85] Ingle NJC, Hammond RH, Beasley MR. J Appl Phys, 2001, 89: 4631-4635 CrossRef ADS Google Scholar

[86] Qin P, Fang G, Sun N, Fan X, Zheng Q, Chen F, Wan J, Zhao X. Appl Surface Sci, 2011, 257: 3952-3958 CrossRef ADS Google Scholar

[87] Qin P, Fang G, Zeng W, Fan X, Zheng Q, Cheng F, Wan J, Zhao X. Sol Energy Mater Sol Cells, 2011, 95: 3311-3317 CrossRef Google Scholar

[88] Qin P, Fang G, He Q, Sun N, Fan X, Zheng Q, Chen F, Wan J, Zhao X. Sol Energy Mater Sol Cells, 2011, 95: 1005-1010 CrossRef Google Scholar

[89] Yi Y, Jeon PE, Lee H, Han K, Kim HS, Jeong K, Cho SW. J Chem Phys, 2009, 130: 094704 CrossRef PubMed ADS Google Scholar

[90] Chu CW, Li SH, Chen CW, Shrotriya V, Yang Y. Appl Phys Lett, 2005, 87: 193508 CrossRef ADS Google Scholar

[91] Kr?ger M, Hamwi S, Meyer J, Riedl T, Kowalsky W, Kahn A. Org Electron, 2009, 10: 932-938 CrossRef Google Scholar

[92] Park JS, Lee BR, Lee JM, Kim JS, Kim SO, Song MH. Appl Phys Lett, 2010, 96: 243306 CrossRef ADS Google Scholar

[93] Meyer J, Zilberberg K, Riedl T, Kahn A. J Appl Phys, 2011, 110: 033710 CrossRef ADS Google Scholar

[94] Kyaw AKK, Sun XW, Jiang CY, Lo GQ, Zhao DW, Kwong DL. Appl Phys Lett, 2008, 93: 221107 CrossRef ADS Google Scholar

[95] Liu J, Shao S, Fang G, Meng B, Xie Z, Wang L. Adv Mater, 2012, 24: 2774-2779 CrossRef PubMed Google Scholar

[96] Vasilopoulou M, Douvas AM, Georgiadou DG, Palilis LC, Kennou S, Sygellou L, Soultati A, Kostis I, Papadimitropoulos G, Davazoglou D, Argitis P. J Am Chem Soc, 2012, 134: 16178-16187 CrossRef PubMed Google Scholar

[97] Cheng F, Fang G, Fan X, Huang H, Zheng Q, Qin P, Lei H, Li Y. Sol Energy Mater Sol Cells, 2013, 110: 63-68 CrossRef Google Scholar

[98] Kato S, Ishikawa R, Kubo Y, Shirai H, Ueno K. Jpn J Appl Phys, 2011, 50: 071604 CrossRef Google Scholar

[99] Frey GL, Reynolds KJ, Friend RH, Cohen H, Feldman Y. J Am Chem Soc, 2003, 125: 5998-6007 CrossRef PubMed Google Scholar

[100] Jin H, Tao C, Velusamy M, Aljada M, Zhang Y, Hambsch M, Burn PL, Meredith P. Adv Mater, 2012, 24: 2572-2577 CrossRef PubMed Google Scholar

[101] Tao C, Xie G, Liu C, Zhang X, Dong W, Meng F, Kong X, Shen L, Ruan S, Chen W. Appl Phys Lett, 2009, 95: 053303 CrossRef ADS Google Scholar

[102] Cattin L, Morsli M, Dahou F, Abe SY, Khelil A, Bernède JC. Thin Solid Films, 2010, 518: 4560-4563 CrossRef ADS Google Scholar

[103] Qiao L, Wang D, Zuo L, Ye Y, Qian J, Chen H, He S. Appl Energy, 2011, 88: 848-852 CrossRef Google Scholar

[104] Wu JL, Chen FC, Hsiao YS, Chien FC, Chen P, Kuo CH, Huang MH, Hsu CS. ACS Nano, 2011, 5: 959-967 CrossRef PubMed Google Scholar

[105] Kalfagiannis N, Karagiannidis PG, Pitsalidis C, Panagiotopoulos NT, Gravalidis C, Kassavetis S, Patsalas P, Logothetidis S. Sol Energy Mater Sol Cells, 2012, 104: 165-174 CrossRef Google Scholar

[106] Reineck P, Lee GP, Brick D, Karg M, Mulvaney P, Bach U. Adv Mater, 2012, 24: 4750-4755 CrossRef PubMed Google Scholar

[107] Shao S, Liu J, Bergqvist J, Shi S, Veit C, Würfel U, Xie Z, Zhang F. Adv Energy Mater, 2013, 3: 349-355 CrossRef Google Scholar

[108] Yoon WJ, Berger PR. Appl Phys Lett, 2008, 92: 013306 CrossRef ADS Google Scholar

[109] Sgobba V, Guldi DM. J Mater Chem, 2008, 18: 153-157 CrossRef Google Scholar

[110] Meyer J, Kr?ger M, Hamwi S, Gnam F, Riedl T, Kowalsky W, Kahn A. Appl Phys Lett, 2010, 96: 193302 CrossRef ADS Google Scholar

[111] DeLongchamp DM, Kline RJ, Fischer DA, Richter LJ, Toney MF. Adv Mater, 2011, 23: 319-337 CrossRef PubMed Google Scholar

[112] Yan W, Ye S, Li Y, Sun W, Rao H, Liu Z, Bian Z, Huang C. Adv Energy Mater, 2016, 6: 1600474 CrossRef Google Scholar

[113] Bai S, Cao M, Jin Y, Dai X, Liang X, Ye Z, Li M, Cheng J, Xiao X, Wu Z, Xia Z, Sun B, Wang E, Mo Y, Gao F, Zhang F. Adv Energy Mater, 2014, 4: 1301460 CrossRef Google Scholar

[114] Tu X, Wang F, Li C, Tan Z, Li Y. J Phys Chem C, 2014, 118: 9309-9317 CrossRef Google Scholar

[115] Sun Y, Takacs CJ, Cowan SR, Seo JH, Gong X, Roy A, Heeger AJ. Adv Mater, 2011, 23: 2226-2230 CrossRef PubMed Google Scholar

[116] Stubhan T, Li N, Luechinger NA, Halim SC, Matt GJ, Brabec CJ. Adv Energy Mater, 2012, 2: 1433-1438 CrossRef Google Scholar

[117] Chen CP, Chen YD, Chuang SC. Adv Mater, 2011, : 3859-3863 CrossRef PubMed Google Scholar

[118] Wong KH, Ananthanarayanan K, Heinemann MD, Luther J, Balaya P. Sol Energy, 2012, 86: 3190-3195 CrossRef Google Scholar

[119] Sun N, Fang G, Qin P, Zheng Q, Wang M, Fan X, Cheng F, Wan J, Zhao X, Liu J, Carroll DL, Ye J. J Phys D-Appl Phys, 2010, 43: 445101 CrossRef ADS Google Scholar

[120] Sun N, Fang G, Qin P, Zheng Q, Wang M, Fan X, Cheng F, Wan J, Zhao X. Sol Energy Mater Sol Cells, 2010, 94: 2328-2331 CrossRef Google Scholar

[121] Widjonarko NE, Schulz P, Parilla PA, Perkins CL, Ndione PF, Sigdel AK, Olson DC, Ginley DS, Kahn A, Toney MF, Berry JJ. Adv Energy Mater, 2014, 4: 1301879 CrossRef Google Scholar

[122] Chen TL, Betancur R, Ghosh DS, Martorell J, Pruneri V. Appl Phys Lett, 2012, 100: 013310 CrossRef ADS Google Scholar

[123] Docampo P, Ball JM, Darwich M, Eperon GE, Snaith HJ. Nat Commun, 2013, 4: 2761-2766 CrossRef PubMed ADS Google Scholar

[124] Wang KC, Jeng JY, Shen PS, Chang YC, Diau EWG, Tsai CH, Chao TY, Hsu HC, Lin PY, Chen P, Guo TF, Wen TC. Sci Rep, 2014, 4: 4756 CrossRef PubMed ADS Google Scholar

[125] Wang KC, Shen PS, Li MH, Chen S, Lin MW, Chen P, Guo TF. ACS Appl Mater Interfaces, 2014, 6: 11851-11858 CrossRef PubMed Google Scholar

[126] Li Y, Ye S, Sun W, Yan W, Li Y, Bian Z, Liu Z, Wang S, Huang C. J Mater Chem A, 2015, 3: 18389-18394 CrossRef Google Scholar

[127] Cui J, Meng F, Zhang H, Cao K, Yuan H, Cheng Y, Huang F, Wang M. ACS Appl Mater Interfaces, 2014, 6: 22862-22870 CrossRef PubMed Google Scholar

[128] Trifiletti V, Roiati V, Colella S, Giannuzzi R, De Marco L, Rizzo A, Manca M, Listorti A, Gigli G. ACS Appl Mater Interfaces, 2015, 7: 4283-4289 CrossRef PubMed Google Scholar

[129] You J, Meng L, Song TB, Guo TF, Yang YM, Chang WH, Hong Z, Chen H, Zhou H, Chen Q, Liu Y, De Marco N, Yang Y. Nat Nanotech, 2015, 11: 75-81 CrossRef PubMed ADS Google Scholar

[130] Park JH, Seo J, Park S, Shin SS, Kim YC, Jeon NJ, Shin HW, Ahn TK, Noh JH, Yoon SC, Hwang CS, Seok SI. Adv Mater, 2015, 27: 4013-4019 CrossRef PubMed Google Scholar

[131] Kim JH, Liang PW, Williams ST, Cho N, Chueh CC, Glaz MS, Ginger DS, Jen AKY. Adv Mater, 2015, 27: 695-701 CrossRef PubMed Google Scholar

[132] Jung JW, Chueh CC, Jen AKY. Adv Mater, 2015, 27: 7874-7880 CrossRef PubMed Google Scholar

[133] Kim J, Lee HR, Kim HP, Lin T, Kanwat A, Mohd Yusoff ARB, Jang J. Nanoscale, 2016, 8: 9284-9292 CrossRef PubMed ADS Google Scholar

[134] Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Gr?tzel M, Han L. Science, 2015, 350: 944-948 CrossRef PubMed Google Scholar

[135] Rao H, Ye S, Sun W, Yan W, Li Y, Peng H, Liu Z, Bian Z, Li Y, Huang C. Nano Energy, 2016, 27: 51-57 CrossRef Google Scholar

[136] Li Z. Chem Lett, 2015, 44: 1140-1141 CrossRef Google Scholar

[137] Chen W, Wu Y, Liu J, Qin C, Yang X, Islam A, Cheng YB, Han L. Energy Environ Sci, 2015, 8: 629-640 CrossRef Google Scholar

[138] Shen W, Yang C, Bao X, Sun L, Wang N, Tang J, Chen W, Yang R. Mater Sci Eng-B, 2015, 200: 1-8 CrossRef Google Scholar

[139] Yu W, Li F, Wang H, Alarousu E, Chen Y, Lin B, Wang L, Hedhili MN, Li Y, Wu K, Wang X, Mohammed OF, Wu T. Nanoscale, 2016, 8: 6173-6179 CrossRef PubMed ADS Google Scholar

[140] Zhang H, Wang H, Chen W, Jen AKY. Adv Mater, 2017, 29: 1604984 CrossRef PubMed Google Scholar

[141] Hones P, Diserens M, Lévy F. Surf Coat Tech, 1999, 120–121: 277-283 CrossRef Google Scholar

[142] Wang M, Tang Q, An J, Xie F, Chen J, Zheng S, Wong KY, Miao Q, Xu J. ACS Appl Mater Interfaces, 2010, 2: 2699-2702 CrossRef Google Scholar

[143] Liu Z, Seo S, Lee EC. Appl Phys Lett, 2013, 103: 133306 CrossRef ADS Google Scholar

[144] Irfan , Zhang M, Ding H, Tang CW, Gao Y. Org Electron, 2011, 12: 1588-1593 CrossRef Google Scholar

[145] Sweetnam S, Graham KR, Ngongang Ndjawa GO, Heumüller T, Bartelt JA, Burke TM, Li W, You W, Amassian A, McGehee MD. J Am Chem Soc, 2014, 136: 14078-14088 CrossRef PubMed Google Scholar

[146] Tao C, Ruan S, Xie G, Kong X, Shen L, Meng F, Liu C, Zhang X, Dong W, Chen W. Appl Phys Lett, 2009, 94: 043311 CrossRef ADS Google Scholar

[147] Qiu M, Zhu D, Bao X, Wang J, Wang X, Yang R. J Mater Chem A, 2016, 4: 894-900 CrossRef Google Scholar

[148] Hutter OS, Hatton RA. Adv Mater, 2015, 27: 326-331 CrossRef PubMed Google Scholar

[149] Wang HQ, Li N, Guldal NS, Brabec CJ. Org Electron, 2012, 13: 3014-3021 CrossRef Google Scholar

[150] Gong C, Yang HB, Song QL, Li CM. Org Electron, 2012, 13: 7-12 CrossRef Google Scholar

[151] Guo CX, Sun K, Ouyang J, Lu X. Chem Mater, 2015, 27: 5813-5819 CrossRef Google Scholar

[152] Park MH, Li JH, Kumar A, Li G, Yang Y. Adv Funct Mater, 2009, 19: 1241 Google Scholar

[153] Li XC, Xie FX, Zhang SQ, Hou JH, Choy WCH. Light: Sci Appl, 2015, 4: e273 Google Scholar

  • Figure 1

    (a) High resolution Ni 2P3/2 XPS acquisition for NiO. The spectrum shows three contributions: one from Ni2+ in the octahedral NiO configuration at low binding energy, one from hydroxylated or defective NiO at an intermediate binding energy, and one from a shake-up process in the NiO lattice at the highest binding energy. (b) High resolution O 1s XPS acquisition for NiO. The spectrum shows two contributions: one from O2? in the octahedral NiO configuration at low binding energy and one from hydroxylated or defective NiO at a higher binding energy [59].

  • Figure 2

    UPS and IPES measurements of the density of states near the valence band edge and conduction band and resulting band energies. (a) UPS spectra (He I) of the photoemission cut-off showing an increase in WF after O2-plasma treatment of the NiOx; (b) combined UPS and IPES spectra of the NiOx near the valence and conduction band edge; (c) energy level diagrams of NiOx before and after O2-plasma treatment [70].

  • Figure 3

    The Cu 2P3/2 core level peaks of (a) the as-deposited and (b) UVO-treated CuOx films (color online).

  • Figure 4

    UPS spectra of the as-deposited and UVO-treated CuOx films. The full UPS spectra using He I radiation (a), and the valence-band region (b) are included (color online).

  • Figure 5

    XPS spectra of (a) Cr 2p, (b) Mo 3d, (c) V 2p, and (d) W 4f core level peaks observed for molybdenum oxide thin ?lms [37,80–82] (color online).

  • Figure 6

    (a) UPS spectra of CrOx and Cu:CrOx films with UVO treatment. The full UPS spectra using He I radiation (left) and the valence-band region (right) are included. (b) UPS and IPES spectra of vacuum grown MoO3, V2O5 and WO3. The left panel shows the photoemission onset, the middle panel shows the density of filled states near the valence band (VB) edge, and the right panel shows the density of empty states near the conduction band (CB) edge. The reference is the Fermi level, measured separately on a metallic electrode. The tick marks denote the onset position, the top of the VB, and the bottom of the conduction band [37,58,91,93,110] (color online).

  • Figure 7

    CB minimum and VB maximum with respect to the vacuum level (EVL) for MoO3, V2O5 and WO3, deduced from the UPS and IPES measurements depicted in Figure 6. The ionization energy, work function and electron affinity are indicated in each case (color online).

  • Figure 8

    Schematic illustration of energy levels of each layer and charge transfer in (a) OSC and (b) inverted planar PSC (color online).

  • Figure 9

    Scanning electron microscope (SEM) images of (a) NiOx thin film and (b) NiO nanocrystal, (c) schematic and (d) the energy-level diagram of the device [124,125] (color online).

  • Figure 10

    (a) Photoluminescence and (b) TRPL data of CH3NH3PbI3 contacted with different interfaces; (c) overall device structure, consisting of glass; (d) energy band alignment of the metal-oxide-based perovskite solar cell [129] (color online).

  • Figure 11

    (a) Cell configuration and (b) the cell energy level (versus vacuum) diagram of the inverted PSC with the structure of FTO/NiO/meso-Al2O3/CH3NH3PbI3/PCBM/BCP/Ag [137] (color online).

  • Figure 12

    Structure and band alignments of the PSC. (a) Diagram of the cell configuration highlighting the doped charge carrier extraction layers. The right panels show the composition of Ti(Nb)Ox and the crystal structure of Li+-doped NixMg1?xO, denoted as NiMg(Li)O. (b) A high-resolution crosssectional SEM image of a complete solar cell. (c) Band alignments of the solar cell [134] (color online).

  • Figure 13

    (a) Schematic device structure; (b) energy band diagram of the full solar device; (c) UPS spectra with the secondary-electron cutoff region and zoom-in of the valence band edge of Cu:Ni(ac) and UVO-Cu:Ni(ac) on the ITO substrate; (d) energy level alignment for the ITO/HTL junction [133] (color online).

  • Figure 14

    (a) Device structure of the polymer solar cells; (b) the HOMO and LUMO energy levels of the materials involved in the OSCs [52] (color online).

  • Figure 15

    (a) Preparation process for Cu2O and CuO films; (b) device structure; (c) energy level diagram [76].

  • Figure 16

    (a) Molecular structures of PCDTBT and PC70BM; (b) UPS spectra of ITO and MoOx films on ITO; (c) energy level diagram of the component materials in PCDTBT:PC70BM solar cells fabricated with MoOx as HTL [115].

  • Figure 17

    Schematic energy level diagrams of devices components referenced to the vacuum level. (a) S-MoO3; (b) MoO3; (c) MoO3/MoS2 [54,55] (color online).

  • Table 1   Performance parameters of OSCs with TMO films as interface layers

    Structure of device a)

    HTL prepared method and annealing temperature

    Voc (V)

    Jsc (mA/cm2)

    FF (%)

    PCE (%)

    Ref.

    ITO/NiO (10 nm)/ P3HT:PC61BM/Ca/Al

    Pulsed-laser deposition

    0.638

    11.3

    69.3

    5.16

    [51]

    ITO/NiOx/PCDTBT:PC70BM/Ca/Al

    Solution deposition, 300 °C

    0.879

    11.5

    65.0

    6.7

    [70]

    ITO/NiO(5 nm)/pDTG-TPD:PC71BM/LiF/Al

    Sol-gel deposition, 275 °C

    0.82

    13.9

    68.4

    7.8

    [59]

    ITO/NiO/TQ1:PC71BM/Ca/Al

    Chemistry combustion, 175 °C

    0.87

    10.50

    70.0

    6.42

    [113]

    ITO/CuOx/PCDTBT:PC71BM/Ca/Al

    Sol-gel deposition, 60 °C

    0.89

    10.58

    68.4

    6.44

    [71]

    ITO/CuOx/PBDTTT-C:PC61BM/Ca/Al

    Solution deposition, 80 °C

    0.71

    16.86

    59.7

    7.14

    [52]

    ITO/CuOx/P3HT:ICBA/Ca/Al

    Solution deposition, 80 °C

    0.86

    10.27

    71.3

    6.29

    [52]

    ITO/CuOx/P3HT:PC61BM/Ca/Al

    Solution deposition, 80 °C

    0.59

    9.11

    68.9

    3.70

    [52]

    FTO/CrOx (10 nm)/P3HT:PC60BM/Al

    reactive sputtering, 200 °C

    0.54

    10.97

    55.6

    3.28

    [53]

    ITO/CrOx/P3HT:ICBA/Ca/Al

    UVO treat in situ, room temperature

    0.87

    10.74

    70.3

    6.55

    [114]

    ITO/MoOx/P3HT: PC61BM/Al

    Solution deposition, 70 °C

    0.59

    9.5

    68

    3.8

    [81]

    ITO/MoOx/PCDTBT:PC70BM/ TiOx/Al

    Thermal evaporation

    0.89

    10.88

    67.2

    6.50

    [115]

    ITO/S-MoOx/P3HT:PC61BM/Al

    Sputtering method, 150 °C

    0.630

    10.05

    58.3

    3.69

    [54]

    ITO/MoO3/MoS2/P3HT:PC61BM/Al

    UVO treat in situ, room temperature

    0.627

    9.90

    67.1

    4.15

    [55]

    ITO/WO3/Si-PCPDTBT:PC70BM/ Ca/Ag

    Solution deposition, 80 °C

    0.616

    12.8

    60.4

    4.8

    [116]

    ITO/ZnO/α-PTPTBT:PC61BM/ VOx/Ag

    Solution deposition, room temperature

    0.82

    11.6

    0.53

    5.0

    [117]

    a)P3HT: poly(3-hexylthiophene); PC71/70/61BM: [6,6]-phenyl C71/70/61/-butyric acid methyl ester; PCDTBT:poly(N-9'-heptadecanyl-2,7-carbazole-alt-5,5- (4′,7′-di-2-thienyl-2′,1′,3′-benzothidiazole); pDTG-TPD: poly-dithienogermole-thienopyrrolodione; TQ1: poly[2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl]; PBDTTT-C:poly(4,8-bis-alkyloxybenzo (1,2-b:4,5-b′)dithiophene-2,6-diyl-alt-(alkyl thieno(3,4-b)thiophene-2-carboxylate)-2,6-diyl); ICBA: indene-C60-bisadduct; Si-PCPDTBT: poly[(4,4′-bis(2-ethylhexyl) dithieno[3,2-b:2′,3′-d]silole)-2,6-diyl-alt-(4,7-bis(2-thienyl)-2,1,3-benzothiadiazole)-5,50-diyl]; α-PTPTBT: poly(thiophene-phenylene-thiophene)-(2,1,3-benzothiadiazole).

  • Table 2   Performance parameters of PSCs with TMO films as interface layers

    Structure of device a)

    HTL prepared method and annealing temperature

    The active or mask area of the device

    Voc (V)

    Jsc (mA/cm2)

    FF (%)

    PCE (%)

    Ref.

    ITO/NiOx/MAPbI3/PCBM/ BCP/Al

    Solution deposition, 300 °C

    0.06 cm2

    0.92

    12.43

    68

    7.8

    [63]

    ITO/NiOx/MAPbI3/PCBM/ BCP/Ag

    Solution deposition

    0.10 cm2

    0.994

    20.4

    66.8

    13.6

    [126]

    ITO/NiOx/NiOnc/MAPbI3/ PCBM/BCP/Al

    sputtering deposition, 150 °C

    0.96

    19.8

    61.0

    11.6

    [125]

    ITO/NiOx/CH3NH3PbI3/ZnO/Al

    Solution deposition, 300 °C

    0.10 cm2

    1.01

    21.0

    76.0

    16.1

    [129]

    ITO/NiOx/CH3NH3PbI3/ PCBM/LiF/Al

    Pulsed laser, 200 °C

    0.09 cm2

    1.06

    20.2

    81.3

    17.3

    [130]

    ITO/Cu:NiOx/MAPbI3/ PCBM/C60/Ag

    Sol-gel deposition, 275 °C

    0.0314 cm2

    1.11

    19.17

    72.0

    15.40

    [131]

    ITO/ NiOx/MAPbI3/PCBM/ C60/Ag

    Sol-gel deposition, 275 °C

    0.0314 cm2

    1.08

    14.42

    58.0

    8.94

    [131]

    ITO/Cu:NiOx/MAPbI3/C60/ Bis-C60/Ag

    Combustion method, 150 °C

    0.0314 cm2

    1.05

    22.23

    76.0

    17.74

    [132]

    ITO/Cu:NiOx/MAPbI3/C60/ Bis-C60/Ag

    Conventional sol-gel, 500 °C

    0.0314 cm2

    1.05

    20.53

    72.0

    15.52

    [132]

    ITO/UVO-Cu:Ni(ac)/MAPbI3/PCBM/Al

    Solution deposition, 245 °C

    1.00

    16.1

    67.0

    12.2

    [133]

    FTO/NiOx(Li:Mg)/MAPbI3/ PCBM/Ti(Nb)Ox/Ag

    Spray pyrolysis, 500 °C

    >1 cm2

    1.09

    20.4

    83.0

    18.4

    [134]

    ITO/Cu2Ox/MAPbI3/ PCBM/Ca/A1

    Chemical reaction method in situ, 100 °C

    0.04 cm2

    1.07

    16.52

    75.51

    13.35

    [76]

    ITO/CuO/MAPbI3/PCBM//Ca/A1

    Annealing, 250 °C

    0.04 cm2

    1.06

    15.82

    72.54

    12.16

    [76]

    ITO/CuOx/MAPbI3/ PCBM/C60/BCP/Ag

    Solution deposition, 80 °C

    0.10 cm2

    1.01

    20.1

    70.6

    14.4

    [135]

    ITO/CuOx/MAPbI3?xClx/ PCBM/C60/BCP/Ag

    Solution deposition, 80 °C

    0.10 cm2

    1.11

    22.5

    75.8

    19.0

    [135]

    FTO/Cu:CrOx/MAPbI3/PCBM/Al

    Sputtering deposition, 200 °C

    0.09 cm2

    0.99

    16.33

    70.0

    11.48

    [37]

    ITO/WO3/MAPbI3/PCBM/Al

    Solvo-thermal method, 200 °C

    0.04 cm2

    0.92

    18.10

    64.0

    7.68

    [136]

    a)BCP: bathocuproine.

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1