Preparation of multipartite entangled states used for quantum information networks

logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 57, Issue 7: 1210(2014) https://doi.org/10.1007/s11433-013-5358-0

Preparation of multipartite entangled states used for quantum information networks

More info
  • AcceptedSep 27, 2013
  • PublishedMay 22, 2014

Abstract

The preparation of multipartite entangled states is the prerequisite for exploring quantum information networks and quantum computation. In this paper, we review the experimental progress in the preparation of cluster states and multi-color entangled states with continuous variables. The preparation of lager scale multipartite entangled state provide valuable quantum resources to implement more complex quantum informational tasks.


References

[1] Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000

[2] Braunstein S L, Pati A K. Quantum Information with Continuous Variables. Berlin: Springer, 2003

[3] Bouwmeester D, Ekert A, Zeilinger A. The Physics of Quantum Information. Berlin: Springer, 2000

[4] Bouwmeester D, Pan J W, Mattle K, et al. Experimental quantum teleportation. Nature, 1997, 390: 575-579

[5] Furusawa A, Sorensen J L, Braustein S L, et al. Unconditional quantum teleportation. Science, 1998, 282: 706-709

[6] Mattle K,Weinfurter H, Kwiat P G, et al. Dense coding in experimental quantum communication. Phys Rev Lett, 1996, 76: 4656-4659

[7] Li X Y, Pan Q, Jing J T, et al. Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam. Phys Rev Lett, 2002, 88: 047904

[8] Walther P, Resch K J, Rudolphet T, et al. Experimental one-way quantum computing. Nature, 2005, 434: 169-176

[9] Chen K, Li C M, Zhang Q, et al. Experimental realization of one-way quantum computing with two-photon four-qubit cluster states. Phys Rev Lett, 2007, 99: 120503

[10] Wang Y, Su X L, Shen H, et al. Toward demonstrating controlled-X operation based on continuous-variable four-partite cluster states and quantum teleporters. Phys Rev A, 2010, 81: 022311

[11] Ukai R, Yokoyama S, Yoshikawa J I, et al. Demonstration of a controlled-phase gate for continuous-variable one-way quantum computation. Phys Rev Lett, 2011, 107: 250501

[12] Raussendorf R, Briegel H J. A one-way quantum computer. Phys Rev Lett, 2001, 86: 5188-5191

[13] Menicucci N C, van Loock P, Gu M, et al. Universal quantum computation with continuous-variable cluster states. Phys Rev Lett, 2006, 97:110501

[14] Zhang J, Braunstein S L. Continuous-variable Gaussian analog of cluster states. Phys Rev A, 2006, 73: 032318

[15] Van Loock P,Weedbrook C, Gu M. Building Gaussian cluster states by linear optics. Phys Rev A, 2007, 76: 032321

[16] Gu M, Weedbrook C, Menicucci N C, et al. Quantum computing with continuous-variable clusters. Phys Rev A, 2009, 79: 062318

[17] Van Loock P. Examples of Gaussian cluster computation. J Opt Soc Am B, 2007, 24: 340-346

[18] Tan A H, Xie C D, Peng K C. Quantum logical gates with linear quadripartite cluster states of continuous variables. Phys Rev A, 2009, 79:042338

[19] Miwa Y, Yoshikawa J I, van Loock P, et al. Demonstration of a universal one-way quantum quadratic phase gate. Phys Rev A, 2009, 80:050303(R)

[20] Ukai R, Iwata N, Shimokawa Y, et al. Demonstration of unconditional one-way quantum computations for continuous variables. Phys Rev Lett, 2011, 106: 240504

[21] Huang Y F, Liu B H, Peng L, et al. Experimental generation of an eight-photon Greenberger-Horne-Zeilinger state. Nat Commun, 2011,2: 546

[22] Yao X C, Wang T X, Xu P, et al. Observation of eight-photon entanglement. Nat Photon, 2012, 6: 225-228

[23] Su X L, Zhao Y P, Hao S H, et al. Experimental preparation of eightpartite cluster state for photonic qumodes. Opt Lett, 2012, 37: 5178-5180

[24] Su X L, Hao S H, Zhao Y P, et al. Demonstration of eight-partite twodiamond shape cluster state for continuous variables. Front Phys, 2013, 8: 20-26

[25] Yokoyama S, Ukai R, Armstrong S C, et al. Optical generation of ultralarge- scale continous-variable cluster states. arxiv:1306.3366v1

[26] Kimble H J. The quantum internet. Nature, 2008, 453: 1023-1030

[27] Jia X J, Zhang J,Wang Y, et al. Superactivation of multipartite unlockable bound entanglement. Phys Rev Lett, 2012, 108: 190501

[28] Jing J, Zhang J, Yan Y, et al. Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables. Phys Rev Lett, 2003, 90: 167903

[29] Yonezawa H, Aoki T, Furusawa A. Demonstration of a quantum teleportation network for continuous variables. Nature, 2004, 431: 430-433

[30] Lance A M, Symul T, Bowen W P, et al. Tripartite quantum state sharing. Phys Rev Lett, 2004, 92: 177903

[31] Su X L, Tan A, Jia X, et al. Experimental preparation of quadripartite cluster and Greenberger-Horne-Zeilinger entangled states for continuous variables. Phys Rev Lett, 2007, 98: 070502

[32] Yukawa M, Ukai R, van Loock P, et al. Experimental generation of four-mode continuous-variable cluster states. Phys Rev A, 2008, 78: 012301

[33] Tan A H, Wang Y, Jin X L, et al. Experimental generation of genuine four-partite entangled states with total three-party correlation for continuous variables. Phys Rev A, 2008, 78: 013828

[34] Pysher M, Miwa Y, Shahrokhshahi R, et al. Parallel generation of quadripartite cluster entanglement in the optical frequency comb. Phys Rev Lett, 2011, 107: 030505

[35] Armstrong S, Morizur J F, Janousek J, et al. Programmable multimode quantum networks. Nat Commun, 2012, 3: 1026

[36] Wang Y J, Zheng Y H, Xie C D, et al. High-power low-noise Nd: YAP/LBO laser with dual wavelength outputs. IEEE J Quantum Electron, 2011, 47: 1006-1013

[37] Wang Y, Shen H, Jin X L, et al. Experimental generation of 6 dB continuous variable entanglement from a nondegenerate optical parametric amplifier. Opt Express, 2010, 18: 6149-6155

[38] Zhang Y, Wang H, Li X Y, et al. Experimental generation of bright two-mode quadrature squeezed light from a narrow-band nondegenerate optical parametric amplifier. Phys Rev A, 2000, 62: 023813

[39] Van Loock P, Furusawa A. Detecting genuine multipartite continuousvariable entanglement. Phys Rev A, 2003, 67: 052315

[40] Villar A S, Cruz L S, Cassemiro K N, et al. Generation of bright two-color continuous variable entanglement. Phys Rev Lett, 2005, 95: 243603

[41] Su X L, Tan A H, Jia X J, et al. Experimental demonstration of quantum entanglement between frequency-nondegenerate optical twin beams. Opt Lett, 2006, 31: 1133-1135

[42] Jing J, Feng S, Bloomer R, et al. Experimental continuous-variable entanglement from a phase-difference-locked optical parametric oscillator. Phys Rev A, 2006, 74: 041804

[43] Keller G, D'Auria V, Treps N, et al. Experimental demonstration of frequency-degenerate bright EPR beams with a self-phase-locked OPO. Opt Express, 2008, 16: 9351-9356

[44] Li Y M, Guo X M, Bai Z L, et al. Generation of two-color continuous variable quantum entanglement at 0.8 and 1.5 μm. App Phys Lett, 2010, 97: 031107

[45] Coelho A S, Barbosa F A S, Cassemiro K N, et al. Three-color entanglement. Science, 2009, 326: 823-826

[46] Jia X J, Yan Z H, Duan Z Y, et al. Experimental realization of threecolor entanglement at optical fiber communication and atomic storage wavelengths. Phys Rev Lett, 2012, 109: 253604

[47] Villar A S, Martinelli M, Fabre C, et al. Direct production of tripartite pump-signal-idler entanglement in the above-threshold optical parametric oscillator. Phys Rev Lett, 2006, 97: 140504

[48] Cassemiro K N, Villar A S. Scalable continuous-variable entanglement of light beams produced by optical parametric oscillators. Phys Rev A, 2008, 77: 022311

[49] Tan A H, Xie C D, Peng K C. Bright three-color entangled state produced by cascaded optical parametric oscillators. Phys Rev A, 2012, 85: 013819

[50] Glockl O, Andersen U L, Lorenz S, et al. Sub-shot-noise phase quadrature measurement of intense light beams. Opt Lett, 2004, 29: 1936-1938

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1