The motional trembling (‘zitterbewegung’) of a relativistic electron governed by Dirac equation was originally predicted by Schrödinger in the early days of quantum mechanics and simulated in a recent experiment with a single trapped ultracold ion. We investigate stable and instable confinements of a single trapped ion in a Paul trap under different conditions relevant to parity. Since our treatment involves neither restriction of Lamb-Dicke limit nor rotating-wave approximation, we may demonstrate different quantum dynamics of the single trapped ion in a wide range of the trapping parameters. We discuss the origin of the zitterbewegung which is relevant to the stability of the ion trapping.
[1] Leibfried D, Blatt R, Monroe C, et al. Quantum dynamics of single trapped ions. Rev Mod Phys, 2003, 75: 281-324
[2] Blatt R, Roos C F. Quantum simulations with trapped ions. Nat Phys, 2012, 8: 277-284
[3] Gulde S, Riebe M, Lancaster G P, et al. Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer. Nature, 2003, 421: 48-50
[4] Schmidt-Kaler F, Häffner H, Riebe M, et al. Realization of the Cirac-Zoller controlled-NOT quantum gate. Nature, 2003, 422: 408-411
[5] Chiaverini J, Leibfried D, Schaetz T, et al. Realization of quantum error correction. Nature, 2004, 432: 602-605
[6] Kim K, Chang M S, Korenblit S, et al. Quantum simulation of frustrated Ising spins with trapped ions. Nature, 2010, 465: 590-593
[7] Gerritsma R, Kirchmair G, Zähringer F, et al. Quantum simulation of the Dirac equation. Nature, 2010, 463: 68-71
[8] Lamata L, Leon J, Schaetz T, et al. Dirac equation and quantum relativistic effects in a single trapped ion. Phys Rev Lett, 2007, 98: 253005
[9] Schödinger E, Über die kräftefreie Bewegung in der relativistischen Quantenmechanik. Phys Math KL, 1930, 24: 418-428
[10] Barut A O, Bracken A J. Zitterbewegung and the internal geometry of the electron. Phys Rev D, 1981, 23: 2454-2463
[11] Thaller B. The Dirac Equation. Berlin: Springer-Verlag, 1992
[12] Huang K. On the zitterbewegung of the Dirac electron. Am J Phys, 1952, 20: 479-483
[13] Krekora P, Su Q, Grobe R. Relativistic electron localization and the lack of zitterbewegung. Phys Rev Lett, 2004, 93: 043004
[14] Feshbach H, Villars F. Elementary relativistic wave mechanics of spin 0 and spin 1/2 particles. Rev Mod Phys, 1958, 30: 24-45
[15] Cserti J, Dávid G. Unified description of Zitterbewegung for spintronic, graphene, and superconducting systems. Phys Rev B, 2006, 74: 172305
[16] Dávid G, Cserti J. General theory of Zitterbewegung. Phys Rev B, 2010, 81: R121417
[17] Schliemann J, Loss D, Westervelt R M. Zitterbewegung of electronic wave packets in III-V Zinc-Blende semiconductor quantum wells. Phys Rev Lett, 2005, 94: 206801
[18] Bernardes E, Schliemann J, Lee M, et al. Spin-orbit interaction in symmetric wells with two subbands. Phys Rev Lett, 2007, 99: 076603
[19] Zhang X. Observing zitterbewegung for photons near the Dirac point of a two-dimensional photonic crystal. Phys Rev Lett, 2008, 100: 113903
[20] Vaishnav J Y, Clark C W. Observing zitterbewegung with ultracold atoms. Phys Rev Lett, 2008, 100: 153002
[21] Goldman N, Kubasiak A, Bermudez A, et al. Non-Abelian optical lattices: Anomalous quantum hall effect and Dirac fermions. Phys Rev Lett, 2009, 103: 035301
[22] Merkl M, Zimmer F E, Juzeliunas G, et al. Atomic zitterbewegung. Europhys Lett, 2008, 83: 54002
[23] Zhang Q, Gong J, Oh C H. Driven Dirac-like equation via mirror oscillation: Controlled cold-atom Zitterbewegung. Phys Rev A, 2010, 81: 023608
[24] Lepori L, Mussardo G, Trombettoni A. (3+1) massive Dirac fermions with ultracold atoms in frustrated cubic optical lattices. Europhys Lett, 2010, 92: 50003
[25] Wang Z Y, Xiong C D, Qiu Q. Photon wave function and Zitterbewegung. Phys Rev A, 2009, 80: 032118
[26] Longhi S. Photonic analog of Zitterbewegung in binary waveguide arrays. Opt Lett, 2010, 35: 235-237
[27] Wang K, Liu T, Feng M, et al. Parity-relevant zitterbewegung and quantum simulation by a single trapped ion. Phys Rev A, 2010, 82: 064501
[28] Liu T, Wang K L, Feng M. The generalized analytical approximation to the solution of the single-mode spin-boson model without rotating-wave approximation. Europhys Lett, 2009, 86: 540003
[29] Liu T, Wang K L, Feng M. Lower ground state due to counter-rotating wave interaction in a trapped ion system. J Phys B, 2007, 40: 1967-1974
[30] Meekhof D M, Monroe C, King B E, et al. Generation of nonclassical motional states of a trapped atom. Phys Rev Lett, 1996, 76: 1796-1799
[31] Xing Z L, Yu T, Zhang W, et al. Implementing a topological quantum model using a cavity lattice. Sci China-Phys Mech Astron, 2012, 55: 1549-1556
[32] Yu S, He X, Xu P, et al. Single atoms in the ring lattice for quantum information processing and quantum simulation. Chin Sci Bull, 2012, 57: 1931-1945
Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有
京ICP备18024590号-1