Experimental validation of dynamic polarization compensation in ground-satellite quantum key distribution

logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 57, Issue 7: 1233(2014) https://doi.org/10.1007/s11433-014-5476-3

Experimental validation of dynamic polarization compensation in ground-satellite quantum key distribution

More info
  • AcceptedMar 31, 2014
  • PublishedMay 22, 2014

Abstract

Ground-satellite quantum key distribution (QKD) is a feasible way to implement global-scale quantum communication. Herein we propose an approach to dynamically compensate the polarization of the photons when passing through the optical telescope used in ground-satellite QKD. Our results experimentally demonstrate that the fidelity of any polarization state after dynamic compensation can be achieved by more than 99.5%, which fulfills the requirements of ground-satellite QKD.


References

[1] Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing. In: Processing of the IEEE International Conference on Computers, Systems, and Signal Processing. Bangalore: IEEE, 1984. 175-179

[2] Stucki D, Gisin N, Guinnard O, et al. Quantum key distribution over 67 km with a plug & play system. New J Phys, 2002, 4: 41.1-41.8

[3] Peng C Z, Yang T, Bao X H, et al. Experimental free-space distribution of entangled photon pairs over 13 km: Towards satellite-based global quantum communication. Phys Rev Lett, 2005, 94: 150501

[4] Stucki D, Walenta N, Vannel F, et al. High rate, long-distance quantum key distribution over 250 km of ultra low loss fibers. New J Phys, 2009, 11: 075003

[5] Liu Y, Chen T Y, Wang J, et al. Decoy-state quantum key distribution with polarized photons over 200 km. Opt Express, 2010, 18: 8587-8594

[6] Dixon A R, Yuan Z L, Dynes J F, et al. Continuous operation of high bit rate quantum key distribution. Appl Phys Lett, 2010, 96: 161102

[7] Yin J, Ren J G, Lu H, et al. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature, 2012, 488: 185-188

[8] Cao Y, Liang H, Yin J, et al. Entanglement-based quantum key distribution with biased basis choice via free space. Opt Express, 2013, 21: 27260-27268

[9] Nordholt J E, Hughes R J, Morgan G L, et al. Present and future free-space quantum key distribution. In: Mecherle G S, ed. Proceedings of SPIE: Free-space Laser Communication Technologies XIV. San Jose: SPIE, 2002. 116-126

[10] Aspelmeyer M, Jennewein T, Pfennigbauer M, et al. Long-distance quantum communication with entangled photons using satellites. IEEE J Sel Top Quantum Electron, 2003, 9: 1541-1551

[11] Villoresi P, Tamburini F, Aspelmeyer M, et al. Space-to-ground quantum communication using an optical ground station: A feasibility study. In: Meyers R E, Shih Y, eds. Proceedings of SPIE: Quantum Communications and Quantum Imagin II. Denver: SPIE, 2004. 113-120

[12] Rarity J G, Tapster P R, Gorman P M, et al. Ground to satellite secure key exchange using quantum cryptography. New J Phys, 2002, 4: 82.1-82.21

[13] Miao E L, Han Z F, Gong S S, et al. Background noise of satellite-to-ground quantum key distribution. New J Phys, 2005, 7: 215

[14] Pfennigbauer M, Aspelmeyer M, Leeb W R, et al. Satellite-based quantum communication terminal employing state-of-the-art technology. J Opt Commun Network, 2005, 4: 549-560

[15] Toyoshima M, Takayama Y, Kunimori H, et al. Development of the polarization tracking scheme for free-space quantum cryptography. In: Gilbreath G C, Wasiczko L M, eds. Proceedings of SPIE: Atmospheric Propagation V. Koganei: SPIE, 2008. 6951

[16] Villoresi P, Jennewein T, Tamburini F M, et al. Experimental verification of the feasibility of a quantum channel between space and Earth. New J Phys, 2008, 10: 033038

[17] Bonato C, Villoresi P, Pernechele C. Influence of all-reflective optical systems in the transmission of polarization-encoded qubits. J Opt A-Pure Appl Opt, 2007, 9: 899-906

[18] Born M, Wolf E. Principles of Optics. 7th ed. New York: Cambridge University Press, 2001. 32

[19] Englert B G, Kurtsiefer C, Weinfurter H. Universal unitary gate for single-photon two-qubit states. Phys Rev A, 2001, 63: 032303

[20] Yan J X, Wei G H. Matrix Optics (in chinese). Beijing: Beijing Weapons Industry Press, 1995. 188-189

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1