Fault tolerant channel-encrypting quantum dialogue against collective noise

logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 58, Issue 4: 040301(2015) https://doi.org/10.1007/s11433-014-5613-z

Fault tolerant channel-encrypting quantum dialogue against collective noise

More info
  • ReceivedSep 5, 2014
  • AcceptedOct 9, 2014
  • PublishedNov 13, 2014
PACS numbers

Abstract

In this paper, two fault tolerant channel-encrypting quantum dialogue (QD) protocols against collective noise are presented. One is against collective-dephasing noise, while the other is against collective-rotation noise. The decoherent-free states, each of which is composed of two physical qubits, act as traveling states combating collective noise. Einstein-Podolsky-Rosen pairs, which play the role of private quantum key, are securely shared between two participants over a collective-noise channel in advance. Through encryption and decryption with private quantum key, the initial state of each traveling two-photon logical qubit is privately shared between two participants. Due to quantum encryption sharing of the initial state of each traveling logical qubit, the issue of information leakage is overcome. The private quantum key can be repeatedly used after rotation as long as the rotation angle is properly chosen, making quantum resource economized. As a result, their information-theoretical efficiency is nearly up to 66.7%. The proposed QD protocols only need single-photon measurements rather than two-photon joint measurements for quantum measurements. Security analysis shows that an eavesdropper cannot obtain anything useful about secret messages during the dialogue process without being discovered. Furthermore, the proposed QD protocols can be implemented with current techniques in experiment.


Funded by

National Natural Science Foundation of China(61402407)


References

[1] Bennett C H, Brassard G. Quantum cryptography: Public-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing. Bangalore: IEEE Press. 1984, : 175-179 Google Scholar

[2] Ekert A K. Quantum cryptography based on Bell’s theorem. Phys Rev Lett, 1991, 67(6): 661-663 CrossRef Google Scholar

[3] Bennett C H, Brassard G, Mermin N D. Quantum cryptography without Bell theorem. Phys Rev Lett, 1992, 68: 557-559 CrossRef Google Scholar

[4] Cabello A. Quantum key distribution in the Holevo limit. Phys Rev Lett, 2000, 85: 5635 CrossRef Google Scholar

[5] Deng F G, Long G L. Controlled order rearrangement encryption for quantum key distribution. Phys Rev A, 2003, 68: 042315 CrossRef Google Scholar

[6] Deng F G, Long G L. Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys Rev A, 2004, 70: 012311 CrossRef Google Scholar

[7] Su X L. Applying Gaussian quantum discord to quantum key distribution. Chin Sci Bull, 2014, 59(11): 1083-1090 CrossRef Google Scholar

[8] Zhang C M, Song X T, Treeviriyanupab P, et al. Delayed error verification in quantum key distribution. Chin Sci Bull, 2014, 59(23): 2825-2828 CrossRef Google Scholar

[9] Hillery M, Buzek V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1999, 59: 1829-1834 CrossRef Google Scholar

[10] Karlsson A, Koashi M, Imoto N. Quantum entanglement for secret sharing and secret splitting. Phys Rev A, 1999, 59: 162-168 CrossRef Google Scholar

[11] Xiao L, Long G L, Deng F G, et al. Efficient multiparty quantum-secret-sharing schemes. Phys Rev A, 2004, 69: 052307 CrossRef Google Scholar

[12] Hao L, Li J L, Long G L. Eavesdropping in a quantum secret sharing protocol based on Grover algorithm and its solution. Sci China-Phys Mech Astron, 2010, 53(3): 491-495 CrossRef Google Scholar

[13] Hao L, Wang C, Long G L. Quantum secret sharing protocol with four state Grover algorithm and its proof-of-principle experimental demonstration. Opt Commun, 2011, 284: 3639-3642 CrossRef Google Scholar

[14] Long G L, Liu X S. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys Rev A, 2002, 65: 032302 CrossRef Google Scholar

[15] Bostrom K, Felbinger T. Deterministic secure direct communication using entanglement. Phys Rev Lett, 2002, 89: 187902 CrossRef Google Scholar

[16] Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 2003, 68: 042317 CrossRef Google Scholar

[17] Deng F G, Long G L. Secure direct communication with a quantum one-time pad. Phys Rev A, 2004, 69: 052319 CrossRef Google Scholar

[18] Wang C, Deng F G, Li Y S, et al. Quantum secure direct communication with high-dimension quantum superdense coding. Phys Rev A, 2005, 71: 044305 CrossRef Google Scholar

[19] Wang C, Deng F G, Long G L, Wang C, Deng F G, Long G L. Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state. Opt Commun, 2005, 253(1-3): 15-20 CrossRef Google Scholar

[20] Chen X B, Wen Q Y, Guo F Z, et al. Controlled quantum secure direct communication with W state. Int J Quant Inform, 2008, 6(4): 899-906 CrossRef Google Scholar

[21] Gu B, Huang Y G, Fang X, et al. A two-step quantum secure direct communication protocol with hyperentanglement. Chin Phys B, 2011, 20(10): 100309 CrossRef Google Scholar

[22] Liu D, Chen J L, Jiang W. High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int J Theor Phys, 2012, 51: 2923-2929 CrossRef Google Scholar

[23] Sun Z W, Du R G, Long D Y. Quantum secure direct communication with two-photon four-qubit cluster states. Int J Theor Phys, 2012, 51: 1946-1952 CrossRef Google Scholar

[24] Ren B C, Wei H R, Hua M, et al. Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems. Eur Phys J D, 2013, 67: 30-37 CrossRef Google Scholar

[25] Zou X F, Qiu D W. Three-step semiquantum secure direct communication protocol. Sci China-Phys Mech Astron, 2014, 57(9): 1696-1702 CrossRef Google Scholar

[26] Chang Y, Xu C X, Zhang S B, et al. Controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quantum one-time pad. Chin Sci Bull, 2014, 59(21): 2541-2546 CrossRef Google Scholar

[27] Zhang Z J, Man Z X. Secure direct bidirectional communication protocol using the Einstein-Podolsky-Rosen pair block. Arxiv:quant-ph/ 0403215. Google Scholar

[28] Zhang Z J, Man Z X. Secure bidirectional quantum communication protocol without quantum channel. arxiv:quant-ph/0403217. Google Scholar

[29] Nguyen B A. Quantum dialogue. Phys Lett A, 2004, 328(1): 6-10 CrossRef Google Scholar

[30] Man Z X, Zhang Z J, Li Y. Quantum dialogue revisited. Chin Phys Lett, 2005, 22(1): 22-24 CrossRef Google Scholar

[31] Jin X R, Ji X, Zhang Y Q, et al. Three-party quantum secure direct communication based on GHZ states. Phys Lett A, 2006, 354(1-2): 67-70 CrossRef Google Scholar

[32] Man Z X, Xia Y J. Controlled bidirectional quantum direct communication by using a GHZ state. Chin Phys Lett, 2006, 23(7): 1680-1682 CrossRef Google Scholar

[33] Ji X, Zhang S. Secure quantum dialogue based on single-photon. Chin Phys, 2006, 15(7): 1418-1420 CrossRef Google Scholar

[34] Man Z X, Xia Y J, Nguyen B A. Quantum secure direct communication by using GHZ states and entanglement swapping. J Phys B-At Mol Opt Phys, 2006, 39(18): 3855-3863 CrossRef Google Scholar

[35] Man Z X, Xia Y J. Improvement of security of three-party quantum secure direct communication based on GHZ states. Chin Phys Lett, 2007, 24(1): 15-18 CrossRef Google Scholar

[36] Chen Y, Man Z X, Xia Y J. Quantum bidirectional secure direct communication via entanglement swapping. Chin Phys Lett, 2007, 24(1): 19-22 CrossRef Google Scholar

[37] Yang Y G, Wen Q Y. Quasi-secure quantum dialogue using single photons. Sci China Ser G-Phys Mech Astron, 2007, 50(5): 558-562 CrossRef Google Scholar

[38] Shan C J, Liu J B, Cheng W W, et al. Bidirectional quantum secure direct communication in driven cavity QED. Mod Phys Lett B, 2009, 23(27): 3225-3234 CrossRef Google Scholar

[39] Ye T Y, Jiang L Z. Improvement of controlled bidirectional quantum secure direct communication by using a GHZ state. Chin Phys Lett, 2013, 30(4): 040305 CrossRef Google Scholar

[40] Gao F, Qin S J, Wen Q Y, et al. Comment on: “Three-party quantum secure direct communication based on GHZ states”. Phys Lett A, 2008, 372(18): 3333-3336 CrossRef Google Scholar

[41] Gao F, Guo F Z, Wen Q Y, et al. Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication. Sci China Ser G-Phys Mech Astron, 2008, 51(5): 559-566 CrossRef Google Scholar

[42] Tan Y G, Cai Q Y. Classical correlation in quantum dialogue. Int J Quant Inf, 2008, 6(2): 325-329 CrossRef Google Scholar

[43] Shi G F, Xi X Q, Tian X L, et al. Bidirectional quantum secure communication based on a shared private Bell state. Opt Commun, 2009, 282(12): 2460-2463 CrossRef Google Scholar

[44] Shi G F, Xi X Q, Hu M L, et al. Quantum secure dialogue by using single photons. Opt Commun, 2010, 283(9): 1984-1986 CrossRef Google Scholar

[45] Ye T Y. Large payload bidirectional quantum secure direct communication without information leakage. Int J Quant Inf, 2013, 11(5): 1350051 CrossRef Google Scholar

[46] Ye T Y, Jiang L Z. Quantum dialogue without information leakage based on the entanglement swapping between any two Bell states and the shared secret Bell state. Phys Scr, 2014, 89(1): 015103 CrossRef Google Scholar

[47] Shi G F. Bidirectional quantum secure communication scheme based on Bell states and auxiliary particles. Opt Commun, 2010, 283(24): 5275-5278 CrossRef Google Scholar

[48] Gao G. Two quantum dialogue protocols without information leakage. Opt Commun, 2010, 283(10): 2288-2293 CrossRef Google Scholar

[49] Ye T Y. Quantum secure dialogue with quantum encryption. Commun Theor Phys, 2014, 62(3): 338-342 CrossRef Google Scholar

[50] Zheng C, Long G F. Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs. Sci China-Phys Mech Astron, 2014, 57(7): 1238-1243 CrossRef Google Scholar

[51] Zhang Y S, Li C F, Guo G C. Quantum key distribution via quantum encryption. 2001, 64: 024302. Google Scholar

[52] Bagherinezhad S, Karimipour V. Quantum secret sharing based on reusable GHZ states as secure carriers. Phys Rev A, 2003, 67: 044302 CrossRef Google Scholar

[53] Zeng G H. Encrypting binary bits via quantum cryptography. Chin J Electr, 2004, 13(4): 651-653 Google Scholar

[54] Gao F, Qin S J, Wen Q Y, et al. An effective attack on the quantum key distribution protocol based on quantum encryption. In: Lecture Notes in Computer Science December 15-17 2005 Beijing China, 2005, 3822: 302-312 Google Scholar

[55] Deng F G, Li X H, Li C Y, et al. Multiparty quantum secret report. Chin Phys Lett, 2006, 23(7): 1676-1679 CrossRef Google Scholar

[56] Li X H, Li C Y, Deng F G, et al. Multiparty quantum remote secret conference. Chin Phys Lett, 2007, 24(1): 23-26 CrossRef Google Scholar

[57] Li X H, Li C Y, Deng F G, et al. Quantum secure direct communication with quantum encryption based on pure entangled states. Chin Phys, 2007, 16(8): 2149-2153 CrossRef Google Scholar

[58] Chen X B, Wang T Y, Du J Z, et al. Controlled quantum secure direct communication with quantum encryption. Int J Quant Inf, 2008, 6(3): 543-551 CrossRef Google Scholar

[59] Gao F, Wen Q Y, Qin S J, et al. Quantum asymmetric cryptography with symmetric keys. Sci China Ser G-Phys Mech Astron, 2009, 52(12): 1925-1931 CrossRef Google Scholar

[60] Huang W, Wen Q Y, Jia H Y, et al. Fault tolerant quantum secure direct communication with quantum encryption against collective noise. Chin Phys B, 2012, 21(10): 100308 CrossRef Google Scholar

[61] Bennett C H, Brassard G, Popescu S, et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys Rev Lett, 1996, 76: 722-725 CrossRef Google Scholar

[62] Pan J W, Simon C, Brukner C, et al. Entanglement purification for quantum communication. Nature, 2001, 410: 1067-1070 CrossRef Google Scholar

[63] Pan J W, Simon C. Polarization entanglement purification using spatial entanglement. Phys Rev Lett, 2002, 89: 257901 CrossRef Google Scholar

[64] Sheng Y B, Deng F G. Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys Rev A, 2010, 81: 032307 CrossRef Google Scholar

[65] Sheng Y B, Deng F G. One-step deterministic polarization-entangle- ment purification using spatial entanglement. Phys Rev A, 2010, 82: 044305 CrossRef Google Scholar

[66] Deng F G. One-step error correction for multipartite polarization entanglement. Phys Rev A, 2011, 83: 062316 CrossRef Google Scholar

[67] Ren B C, Du F F, Deng F G. Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys Rev A, 2013, 88: 012302 CrossRef Google Scholar

[68] Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press. 2000, Google Scholar

[69] Li X H, Deng F G, Zhou H Y. Faithful qubit transmission against collective noise without ancillary qubits. Appl Phys Lett, 2007, 91: 144101 CrossRef Google Scholar

[70] Walton Z D, Abouraddy A F, Sergienko A V, et al. Decoherence-free subspaces in quantum key distribution. Phys Rev Lett, 2003, 91: 087901 CrossRef Google Scholar

[71] Boileau J C, Gottesman D, Laflamme R, et al. Robust polarization-based quantum key distribution over a collective-noise channel. Phys Rev Lett, 2004, 92: 017901 CrossRef Google Scholar

[72] Zhang Z J. Robust multiparty quantum secret key sharing over two collective-noise channels. Physica A, 2006, 361: 233-238 CrossRef Google Scholar

[73] Li X H, Deng F G, Zhou H Y. Efficient quantum key distribution over a collective noise channel. Phys Rev A, 2008, 78: 022321 CrossRef Google Scholar

[74] Li X H, Zhao B K, Sheng Y B, et al. Fault tolerant quantum key distribution based on quantum dense coding with collective noise. Int J Quant Inf, 2009, 7(8): 1479-1489 CrossRef Google Scholar

[75] Gu B, Pei S X, Song B, et al. Deterministic secure quantum communication over a collective-noise channel. Sci China Ser G-Phys Mech Astron, 2009, 52(12): 1913-1918 CrossRef Google Scholar

[76] Yang C W, Tsai C W, Hwang T. Fault tolerant two-step quantum secure direct communication protocol against collective noises. Sci China-Phys Mech Astron, 2011, 54(3): 496-501 CrossRef Google Scholar

[77] Gu B, Zhang C Y, Cheng G S, et al. Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci China-Phys Mech Astron, 2011, 54(5): 942-947 CrossRef Google Scholar

[78] Yang C W, Hwang T. Quantum dialogue protocols immune to collective noise. Quantum Inf Process, 2013, 12: 2131-2142 CrossRef Google Scholar

[79] Chang Y, Zhang S B, Li J, et al. Robust EPR-pairs-based quantum secure communication with authentication resisting collective noise. Sci China-Phys Mech Astron, 2014, 57(10): 1907-1912 CrossRef Google Scholar

[80] Ye T Y. Information leakage resistant quantum dialogue against collective noise. Sci China-Phys Mech Astron, 57(12): 2266–2275, doi: 10.1007/s11433-014-5566-2. Google Scholar

[81] Li C Y, Zhou H Y, Wang Y, et al. Secure quantum key distribution network with Bell states and local unitary operations. Chin Phys Lett, 2005, 22(5): 1049-1052 CrossRef Google Scholar

[82] Li C Y, Li X H, Deng F G, et al. Efficient quantum cryptography network without entanglement and quantum memory. Chin Phys Lett, 2006, 23(11): 2896-2899 CrossRef Google Scholar

[83] Shannon C E. Communication theory of secrecy system. Bell System Tech J, 1949, 28: 656-715 CrossRef Google Scholar

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1