High-efficiency Gaussian key reconciliation in continuous variable quantum key distribution

logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 59, Issue 1: 614201(2016) https://doi.org/10.1007/s11433-015-5702-7

High-efficiency Gaussian key reconciliation in continuous variable quantum key distribution

More info
  • ReceivedMar 31, 2015
  • AcceptedMay 20, 2015
PACS numbers

Abstract

Efficient reconciliation is a crucial step in continuous variable quantum key distribution. The progressive-edge-growth (PEG) algorithm is an efficient method to construct relatively short block length low-density parity-check (LDPC) codes. The qua-si- cyclic construction method can extend short block length codes and further eliminate the shortest cycle. In this paper, by combining the PEG algorithm and quasi-cyclic construction method, we design long block length irregular LDPC codes with high error-correcting capacity. Based on these LDPC codes, we achieve high-efficiency Gaussian key reconciliation with slice recon-ciliation based on multilevel coding/multistage decoding with an efficiency of 93.7%.


Funded by

Natural Science Foundation of Shanxi Province(2014011007-1)

National Natural Science Foundation of China(61378010)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant No. 61378010), and the Natural Science Foundation of Shanxi Province (Grant No. 2014011007-1).


References

[1] C. H. Bennett, and G. Brassard, in Quantum cryptography: Public key distribution and coin tossing: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (Bangalore, 1984), pp. 175–179.. Google Scholar

[2] Gisin N., Ribordy G., Tittel W., Zbinden H.. Rev. Mod. Phys., 2002, 74: 145 Google Scholar

[3] Scarani V., Bechmann-Pasquinucci H., Cerf N. J., Du?ek M., Lütkenhaus N., Peev M.. Rev. Mod. Phys., 2009, 81: 1301 Google Scholar

[4] Grosshans F., Van Assche G., Wenger J., Brouri R., Cerf N. J., Grangier P.. Nature, 2003, 421: 238 Google Scholar

[5] Jouguet P., Kunz-Jacques S., Leverrier A., Grangier P., Diamanti E.. Nat. Photonics, 2013, 7: 378 Google Scholar

[6] Maurer U. M.. IEEE Trans. Inform. Theor., 1993, 39: 733 Google Scholar

[7] Bennett C. H., Brassard G., Robert J. M.. SIAM J. Comput., 1988, 17: 210 Google Scholar

[8] Bennett C. H., Brassard G., Crepeau C., Maurer U. M.. IEEE Trans. Inform. Theor., 1995, 41: 1915 Google Scholar

[9] Van Assche G., Cardinal J., Cerf N. J.. IEEE Trans. Inform. Theor., 2004, 50: 394 Google Scholar

[10] M. Bloch, A. Thangaraj, S. W. Mclaughlin, and J. M. Merolla, in LDPC-based Gaussian key reconciliation: Proceedings of IEEE Information Theory Workshop (Punta del Este, 2006), pp. 116-120.. Google Scholar

[11] Lodewyck J., Bloch M., García-Patrón R., Fossier S., Karpov E., Diamanti E., Debuisschert T., Cerf N. J., Tualle-Brouri R., McLaughlin S. W., Grangier P.. Phys. Rev. A, 2007, 76: 042305 Google Scholar

[12] X. Y. Hu, E. Eleftheriou, and D. M. Arnold, in Progressive edge- growth Tanner graphs: Proceedings of IEEE Global Telecommunications Conference (San Antonio, 2001), pp. 995-1001.. Google Scholar

[13] X. Y. Hu, E. Eleftheriou, and D. M. Arnold, in Irregular progressive edge-growth (PEG) Tanner graphs: Proceedings of IEEE International Symposium on Information Theory (Zurich Research Laboratory, Ruschlikon, 2002), pp. 480.. Google Scholar

[14] Hu X. Y., Eleftheriou E., Arnold D. M.. IEEE Trans. Inform. Theor., 2005, 51: 386 Google Scholar

[15] Fossorier M. P. C.. IEEE Trans. Inform. Theor., 2004, 50: 1788 Google Scholar

[16] T. Okamura, in Designing LDPC codes using cyclic shifts: Proceedings of IEEE International Symposium on Information Theory (Yokohama, 2003), pp. 151.. Google Scholar

[17] F. Grosshans, and P. Grangier, arXiv: quant-ph/0204127v1.. Google Scholar

[18] Max J.. IRE Trans. Inform. Theor., 1960, 6: 7 Google Scholar

[19] Liveris A. D., Xiong Z. X., Georghiades C. N.. IEEE Commun. Lett., 2002, 6: 440 Google Scholar

[20] Z. Y. Fan, W. B. Zhang, X. C. Liu, and H. H. Cheng, in An improved algorithm for constructing QC-LDPC codes based on the PEG algorithm: Proceedings of IEEE 4th International Conference on Communications and Networking (Xi’an, 2009), pp. 1-4.. Google Scholar

[21] Lu J., Moura J. M. F.. IEEE Trans. Magn., 2006, 42: 208 Google Scholar

[22] Richardson T. J., Urbanke R. L.. IEEE Trans. Inform. Theor., 2001, 47: 599 Google Scholar

[23] Richardson T. J., Shokrollahi M. A., Urbanke R. L.. IEEE Trans. Inform. Theor., 2001, 47: 619 Google Scholar

[24] Chung S. Y., Richardson T. J., Urbanke R. L.. IEEE Trans. Inform. Theor., 2001, 47: 657 Google Scholar

[25] Storn R., Price K.. J. Global Optim., 1997, 11: 341 Google Scholar

[26] Leverrier A., Alléaume R., Boutros J., Zémor G., Grangier P.. Phys. Rev. A, 2008, 77: 042325 Google Scholar

[27] Jouguet P., Kunz-Jacques S., Leverrier A.. Phys. Rev. A, 2011, 84: 062317 Google Scholar

  • Figure 1

    (Color online) Optimal quantization efficiency versus the SNRs for Lloyd-Max quantization (solid lines) and equal interval quantization (dashed lines).

  • Figure 2

    MLC/MSD with side information for reverse reconciliation.

  • Figure 3

    (Color online) The bit error rates of LDPC codes using different construction methods; all have a code rate of R=0.5.

  • Table 1   Good degree distribution pairs of code rate 0.4 and 0.9. represents the maximum allowed value of noise for the BIAWGN channel

    Rate

    l2

    l3

    l7

    l8

    l10

    r5

    r6

    r42

    r43

    s*

    0.4

    0.2998

    0.2848

    0.1866

    0.2288

    0.2981

    0.7019

    1.086

    0.9

    0.1741

    0.2740

    0.1652

    0.3867

    0.9284

    0.0716

    0.505

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1