Energy loss of tens keV charged particles traveling in the hot dense carbon plasma

logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 59, Issue 8: 685211(2016) https://doi.org/10.1007/s11433-016-0067-2

Energy loss of tens keV charged particles traveling in the hot dense carbon plasma

More info
  • ReceivedFeb 16, 2016
  • AcceptedApr 14, 2016
  • PublishedJun 21, 2016
PACS numbers

Abstract

The energy loss of charged particles, including electrons, protons, and$\alpha$-particles with tens keV initial energy $E_{0}$, traveling in the hot dense carbon (C) plasma for densities from $2.281$ to $22.81$ g/cm$^{3}$ and temperatures from $400$ to $1500$ eV is systematically and quantitatively studied by using the dimensional continuation method. The behaviors of different charged particles are readily distinguishable from each other. Firstly, because an ion is thousands times heavier than an electron, the penetration distance of the electron is much longer than that of proton and$\alpha$-particle traveling in the plasma. Secondly, most energy of electron projectile with $E_{0}<100$ keV deposits into the electron species of C plasma, while for the cases of proton and $\alpha$-particle with $E_{0}<100$ keV, about more than half energy transfers into the ion species of C plasma. A simple decreasing law of the penetration distance as a function of the plasma density is fitted, and different behaviors of each projectile particle can be clearly found from the fitted data. We believe that with the advanced progress of the present experimental technology, the findings shown here could be confirmed in ion-stopping experiments in the near future.


Funded by

National Natural Science Foundation of China(11205019)

National Natural Science Foundation of China(11274049)

National Natural Science Foundation of China(U1530258)

National Natural Science Foundation of China(11575032)

National Natural Science Foundation of China(11304009)


Acknowledgment

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11575032, 11274049, U1530258, 11205019 and 11304009), the National Magnetic Confinement Fusion Energy Research Project of China (Grant No. 2015B108002), the Presidential Foundation of China Academy of Engineering Physics (CAEP) (Grant No. YZ2015014) and the Foundation for the Development of Science and Technology of CAEP (Grant No. 2014B0102015).


References

[1] M. W. C. Dharma-Wardana, Laser Interactions with Atoms, Solids, and Plasmas, edited by R. M. More (Plenum, New York, 1994), p. 331.. Google Scholar

[2] Lindl J. D., Amendt P., Berger R. L., Glendinning S. G., Glenzer S. H., Haan S. W., Kauffman R. L., Landen O. L., Suter L. J.. Phys. Plasmas, 2004, 11: 339 CrossRef Google Scholar

[3] F. Graziani, M. P. Desjarlais, R. Redmer, and S. B. Trickey, Frontiers and Challenges in Warm Dense Matter (Springer, Cham, Heidelberg, New York, Dordrecht, London, 2014).. Google Scholar

[4] Maynard G., Deutsch C.. J. Phys., 1985, 46: 1113 CrossRef Google Scholar

[5] Gericke D. O., Schlanges M.. Phys. Rev. E, 1999, 60: 904 CrossRef Google Scholar

[6] Mehlhorn T. A.. J. Appl. Phys., 1981, 52: 6522 CrossRef Google Scholar

[7] Brown L. S., Preston D. L., Singleton Jr R. L.. Phys. Rep., 2005, 410: 237, CrossRef Google Scholar

[8] Mahdavi M., Koohrokhi T.. Phys. Rev. E, 2012, 85: 016405 CrossRef Google Scholar

[9] M. W. C. Dharma-Wardana, and F. Perrot, Phys. Rev. E \textbf{58}, 3705 (1998); \textbf{63}, 069901(E) (2001); M. W. C. Dharma-Wardana, Phys. Rev. Lett. \textbf{101}, 035002 (2008).. Google Scholar

[10] Daligault J., Dimonte G.. Phys. Rev. E, 2009, 79: 056403 CrossRef Google Scholar

[11] Barriga-Carrasco M. D.. Phys. Rev. E, 2009, 79: 027401 CrossRef Google Scholar

[12] Fu Z. G., Wang Z., Li D. F., Kang W., Zhang P.. Phys. Rev. E., 2015, 92: 033103 CrossRef Google Scholar

[13] Jeon B., Foster M., Colgan J., Csanak G., Kress J. D., Collins L. A., Gr{\o}nbech-Jensen N.. Phys. Rev. E, 2008, 78: 036403 CrossRef Google Scholar

[14] Glosli J. N., Graziani F. R., More R. M., Murillo M. S., Streitz F. H., Surh M. P., Benedict L. X., Hau-Riege S., Langdon A. B., London R. A.. Phys. Rev. E, R, 78: 025401 Google Scholar

[15] Grabowski P. E., Surh M. P., Richards D. F., Graziani F. R., Murillo M. S.. Phys. Rev. Lett., 2013, 111: 215002 CrossRef Google Scholar

[16] R. L. Liboff, Kinetic Theory: Classical, Quantum, and Relativistic Descriptions, Graduate Texts in Contemporary Physics (Springer, New York, 2003).. Google Scholar

[17] Li C. K., Petrasso R. D.. Phys. Rev. Lett., 1993, 70: 3059 CrossRef Google Scholar

[18] J. D. Huba, NRL Plasma Formulary (Naval Research Laboratory, Washington D C, 2009).. Google Scholar

[19] Regan S. P., Epstein R., Hammel B. A., Suter L. J., Scott H. A., Barrios M. A., Bradley D. K., Callahan D. A., Cerjan C., Collins G. W., Dixit S. N., D?ppner T., Edwards M. J., Farley D. R., Fournier K. B., Glenn S., Glenzer S. H., Golovkin I. E., Haan S. W., Hamza A., Hicks D. G., Izumi N., Jones O. S., Kilkenny J. D., Kline J. L., Kyrala G. A., Landen O. L., Ma T., Macfarlane J. J., Mackinnon A. J., Mancini R. C., Mccrory R. L., Meezan N. B., Meyerhofer D. D., Nikroo A., Park H. S., Ralph J., Remington B. A., Sangster T. C., Smalyuk V. A., Springer P. T., Town R. P. J.. Phys. Rev. Lett., 2013, 111: 045001 CrossRef Google Scholar

[20] Hau-Riege S. P., Graf A., D?pner T., London R. A., Krzywinski J., Fortmann C., Glenzer S. H., Frank M., Sokolowski-Tinten K., Messerschmidt M., Bostedt C., Schorb S., Bradley J. A., Lutman A., Rolles D., Rudenko A., Rudek B.. Phys. Rev. Lett., 2012, 108: 217402 CrossRef Google Scholar

[21] White T. G., Vorberger J., Brown C. R. D., Crowley B. J. B., Davis P., Glenzer S. H., Harris J. W. O., Hochhaus D. C., Pape S. Le, Ma T., Murphy C. D., Neumayer P., Pattison L. K., Richardson S., Gericke D. O., Gregori G.. Sci. Rep., 2012, 2: 889 Google Scholar

[22] White T. G., Hartley N. J., Borm B., Crowley B. J. B., Harris J. W. O., Hochhaus D. C., Kaempfer T., Li K., Neumayer P., Pattison L. K., Pfeifer F., Richardson S., Robinson A. P. L., Uschmann I., Gregori G.. Phys. Rev. Lett., 2014, 112: 145005 CrossRef Google Scholar

[23] Hartley N. J., Belancourt P., Chapman D. A., D?pner T., Drake R. P., Gericke D. O., Glenzer S. H., Khaghani D., LePape S., Ma T., Neumayer P., Pak A., Peters L., Richardson S., Vorberger J., White T. G., Gregori G.. High Energy Density Phys., 2015, 14: 1 CrossRef Google Scholar

[24] Frank A., Bla\v{z}vi? A., Bagnoud V., Basko M. M., B?ner M., Cayzac W., Kraus D., He{\ss}ing T., Hoffmann D. H. H., Ortner A., Otten A., Pelka A., Pepler D., Schumacher D., Tauschwitz A., Roth M.. Phys. Rev. Lett., 2013, 110: 115001 CrossRef Google Scholar

[25] Zylstra A. B., Frenje J. A., Grabowski P. E., Li C. K., Collins G. W., Fitzsimmons P., Glenzer S., Graziani F., Hansen S. B., Hu S. X., Johnson M. G., Keiter P., Reynolds H., Rygg J. R., Séguin F. H., Petrasso R. D.. Phys. Rev. Lett., 2015, 114: 215002 CrossRef Google Scholar

[26] Frenje J. A., Grabowski P. E., Li C. K., Séuin F. H., Zylstra A. B., Johnson M. Gatu, Petrasso R. D., Glebov V. Yu, Sangster T. C.. Phys. Rev. Lett., 2015, 115: 205001 CrossRef Google Scholar

[27] Boehly T. R., Craxton R. S., Hinterman T. H., Kelly J. H., Kessler T. J., Kumpan S.A., Letzring S. A., Mccrory R. L., Morse S. F. B., Seka W., Skupsky S., Soures J. M., Verdon C. P.. Rev. Sci. Instrum., 1995, 66: 508 CrossRef Google Scholar

[28] Zhan W. L., Xia J. W., Zhao H. W., Xiao G. Q., Yuan Y. J., Xu H. S., Man K. D., Yuan P., Gao D. Q., Yang X. T., Song M. T., Cai X. H., Yang X. D., Sun Z. Y., Huang W. X., Gan Z. G., Wei B. W., Group HIRFL-CSR. Nucl. Phys. A, 2008, 805: 533c CrossRef Google Scholar

[29] Sharkov B. Yu., Koshkarev D. G., Churazov M. D., Alexeev N. N., Basko M. M., Golubev A. A., Zenkevich P. R.. Nucl. Instr. Meth. Phys. Res. A, 1998, 415: } 20, CrossRef Google Scholar

[30] Lenard A.. Ann. Phys. (NY), 1960, 10: 390 CrossRef Google Scholar

[31] Balescu R.. Phys. Fluids, 1960, 3: 52 CrossRef Google Scholar

[32] Butler S. T., Buckingham M. J.. Phys. Rev., 1962, 126: 1 CrossRef Google Scholar

[33] Yan J., Qiu Y. B.. Phys. Rev. E, 2001, 64: 056401 CrossRef Google Scholar

[34] Wang Z., Fu Z. G., He B., Zhang P.. Phys. Plasmas, 2014, 21: 072703 CrossRef Google Scholar

[35] Wang Z., Fu Z. G., Zhang P.. Phys., 2014, Plasmas: 21, 102307 Google Scholar

[36] Cayzac W., Bagnoud V., Basko M. M., Bla?evi? A., Frank A., Gericke D. O., Hallo L., Malka G., Ortner A., Tauschwitz An., Vorberger J., Roth M.. Phys. Rev. E, 2015, 92: 053109 CrossRef Google Scholar

[37] Wilks S. C., Langdon A. B., Cowan T. E., Roth M., Singh M., Hatchett S., Key M. H., Pennington D., MacKinnon A., Snavely R. A.. Phys. Plasmas, 2001, 8: 542 CrossRef Google Scholar

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1