A two-way satellite time and frequency transfer (TWSTFT) device equipped in the BeiDou navigation satellite system (BDS) can calculate clock error between satellite and ground master clock. TWSTFT is a real-time method with high accuracy because most system errors such as orbital error, station position error, and tropospheric and ionospheric delay error can be eliminated by calculating the two-way pseudorange difference. Another method, the multi-satellite precision orbit determination (MPOD) method, can be applied to estimate satellite clock errors. By comparison with MPOD clock estimations, this paper discusses the applications of the BDS TWSTFT clock observations in satellite clock measurement, satellite clock prediction, navigation system time monitor, and satellite clock performance assessment in orbit. The results show that with TWSTFT clock observations, the accuracy of satellite clock prediction is higher than MPOD. Five continuous weeks of comparisons with three international GNSS Service (IGS) analysis centers (ACs) show that the reference time difference between BeiDou time (BDT) and golbal positoning system (GPS) time (GPST) realized IGS ACs is in the tens of nanoseconds. Applying the TWSTFT clock error observations may obtain more accurate satellite clock performance evaluation in the 104 s interval because the accuracy of the MPOD clock estimation is not sufficiently high. By comparing the BDS and GPS satellite clock performance, we found that the BDS clock stability at the 103 s interval is approximately 10?12, which is similar to the GPS IIR.
The National Natural Sciences Foundation of China(41574029)
This work was supported by the National Natural Sciences Foundation of China (Grant No. 41574029) and Youth Innovation Promotion Association CAS (Grant No. 2016242). We would like to thank the Beijing Global Information Application and Development Center for providing the TWSTFT observations of the BDS. We also thank IGS for providing the BDS satellite clock products. The authors gratefully acknowledge the support of all individuals and institutions that have supported this work.
[1] Gao W. G., Lin Y. T., Chen G. C., Meng T. N.. J. Geomat Sci. Tech., 2014, 31: 342 Google Scholar
[2]
L. Liu,
[3] Liu L., Zhu L. F., Han C. H., Liu X. P., Li C.. Astron. Sin., 2009, 50: 189 Google Scholar
[4] Liu L., Tang G. F., Han C. H., Shi X., Guo R., Zhu L. F.. Sci. China-Phys. Mech. Astron., 2015, 58: 089502 CrossRef ADS Google Scholar
[5] Steigenberger P., Hugentobler U., Loyer S., Perosanz F., Prange L., Dach R., Uhlemann M., Gendt G., Montenbruck O.. Adv. Space Res., 2015, 55: 269 CrossRef ADS Google Scholar
[6] Zhou S. S., Hu X. G., Wu B., Liu L., Qu W. J., Guo R., He F., Cao Y. L., Wu X. L., Zhu L. F., Shi X., Tan H. L.. Sci. China-Phys. Mech. Astron., 2011, 54: 1089 CrossRef ADS Google Scholar
[7] Hauschild A., Montenbruck O., Steigenberger P.. GPS Solut., 2013, 17: 295 CrossRef Google Scholar
[8]
Erin R. Griggs, E. R. Kursinski, D. M. Akos, in
[9]
A. Hesselbarth, L. Wanninger, in
[10] Jia X. L., Feng L. P., Mao Y., Yang H. Y., Time, Frequency J.. 2010, 33: 115 Google Scholar
[11] Zhang Q. H., Sui L. F., Jia X. L., Xiao G. R., Positioning J. Navig,. 2014, 2: 46 Google Scholar
[12]
O. Montenbruck, P. Steigenberger, and G. Kirchner, in
[13] Wang B., Lou Y., Liu J., Zhao Q., Su X.. GPS Solut., 2015, CrossRef Google Scholar
[14]
Z. G. Hu,
[15] He F., Zhou S. S., Hu X. G., Zhou J. H., Liu L., Guo R., Li X. J., Wu S.. Sci. China-Phys. Mech. Astron., 2014, 57: 1395 CrossRef ADS Google Scholar
[16] Li X. J., Zhou J. H., Hu X. G., Liu L., Guo R., Zhou S. S.. Sci. China-Phys. Mech. Astron., 2015, 58: 089501 CrossRef ADS Google Scholar
[17]
D. Svehla, in
[18]
D. W. Allan, and J. A. Barnes, in
[19]
H. R. Guo,
Figure 1
(Color online) Diagram of TWSTFT measure.
Figure 2
(Color online) TWSTFT and MPOD clock comparison time series. (a) Shows the GEO satellite clock comparisons; (b) shows the IGSO; (c) shows MEO. Different colors represent different satellites listed in the right legends.
Figure 3
(Color online) TWSTFT and MPOD clock linear fitting RMS and a1 time series. The left subplots show the TWSTFT residual and the MPOD clock fitting residual in blue and red, respectively. The right subplots show the linear fitting parameter (a1) time series. The blue points represent TWSTFT fitting results, and red points represent MPOD results.
Figure 4
(Color online) Satellite clock prediction error time series for TWSTFT and MPOD. The blue represents TWSTFT clock prediction error, the red MPOD clock predictions error. (a)-(c) Represent C01 (GEO), C08 (IGSO), C11 (MEO) satellite clock prediction error respectively.
Figure 5
(Color online) Comparisons of TWSTFT and three AC MPOD clocks. The three rows represent three ACs, (a) the comparison between TWSTFT and CODE MPOD clock; (b) the comparison between TWSTFT and GFZ; (c) the comparison between TWSTFT and WHU. Different colors represent different satellites listed in the right legends.
Figure 6
(Color online) Satellite performance evaluations in orbit. The blue and red curves represent Allan variances calculated by TWSTFT and by GFZ MPOD clock data, respectively. (a)-(c) Represent C01 (GEO), C08 (IGSO), C11 (MEO).
Figure 7
(Color online) Comparison of GPS and BDS satellite performance evaluations in orbit. The black points represent BDS Allan variance, and the other colors represent GPS. The same color represents the same GPS block type.
Error source |
TWSTFT |
MPOD |
System error |
residual ionospheric delay device bias |
orbital correlated error |
White noise |
0.707 |
BDS ionospheric free combination B1/B2: 2.90 B1/B3: 3.53 |
Satellite reference position |
B3 send phase center |
LC combination phase center |
Ground reference time |
BDT: ground atomic time |
the GPST realized at each AC (see ref. |
SATID |
Mean (ns) |
STD (ns) |
SATID |
Mean (ns) |
STD (ns) |
01 |
13.181 |
1.591 |
08 |
16.585 |
0.472 |
02 |
–13.801 |
1.328 |
09 |
6.220 |
0.360 |
03 |
0.928 |
1.252 |
10 |
–1.083 |
0.528 |
04 |
–0.421 |
0.864 |
11 |
0.441 |
0.385 |
05 |
–9.354 |
1.589 |
12 |
–10.542 |
0.270 |
06 |
17.422 |
0.314 |
14 |
–23.356 |
0.360 |
07 |
17.844 |
0.533 |
– |
– |
– |
SATID |
GFZ (ns) |
TWSTFT (ns) |
SATID |
GFZ (ns) |
TWSTFT (ns) |
C01 |
0.108 |
0.126 |
C08 |
0.304 |
0.321 |
C02 |
0.116 |
0.128 |
C09 |
0.079 |
0.128 |
C03 |
0.068 |
0.111 |
C10 |
0.134 |
0.176 |
C04 |
0.176 |
0.176 |
C11 |
0.154 |
0.218 |
C05 |
0.086 |
0.138 |
C12 |
0.075 |
0.152 |
C06 |
0.153 |
0.175 |
C14 |
0.053 |
0.156 |
C07 |
0.093 |
0.129 |
– |
– |
– |
Mean (all satellites): GFZ: 0.126 TWSTFT: 0.166 |
SATID |
TWSTFT (ns) |
MPOD (ns) |
SATID |
TWSTFT (ns) |
MPOD (ns) |
01 |
0.556 |
1.072 |
08 |
1.505 |
1.636 |
02 |
0.462 |
1.239 |
09 |
0.435 |
0.708 |
03 |
0.369 |
0.764 |
10 |
0.682 |
0.888 |
04 |
0.726 |
1.553 |
11 |
0.620 |
0.816 |
05 |
0.787 |
1.475 |
12 |
0.450 |
0.762 |
06 |
1.268 |
1.280 |
14 |
0.613 |
0.734 |
07 |
0.582 |
0.874 |
mean |
0.697 |
1.062 |
Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有
京ICP备18024590号-1