Joint product numerical range and geometry of reduced density matrices

logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 60, Issue 2: 020312(2017) https://doi.org/10.1007/s11433-016-0404-5

Joint product numerical range and geometry of reduced density matrices

More info
  • ReceivedOct 11, 2016
  • AcceptedDec 8, 2016
  • PublishedDec 23, 2016
PACS numbers

Abstract

The reduced density matrices of a many-body quantum system form a convex set, whose three-dimensional projection $\Theta$ is convex in $\mathbb{R}^3$. The boundary $\partial\Theta$ of $\Theta$ may exhibit nontrivial geometry, in particular ruled surfaces. Two physical mechanisms are known for the origins of ruled surfaces: symmetry breaking and gapless. In this work, we study the emergence of ruled surfaces for systems with local Hamiltonians in infinite spatial dimension, where the reduced density matrices are known to be separable as a consequence of the quantum de Finetti's theorem. This allows us to identify the reduced density matrix geometry with joint product numerical range $\Pi$ of the Hamiltonian interaction terms. We focus on the case where the interaction terms have certain structures, such that a ruled surface emerges naturally when taking a convex hull of $\Pi$. We show that, a ruled surface on $\partial\Theta$ sitting in $\Pi$ has a gapless origin, otherwise it has a symmetry breaking origin. As an example, we demonstrate that a famous ruled surface, known as the oloid, is a possible shape of $\Theta$, with two boundary pieces of symmetry breaking origin separated by two gapless lines.


Acknowledgment

This work was supported by the Natural Sciences and Engineering Research Council of Canada, Canadian Institute for Advanced Research, Perimeter Institute for Theoretical Physics. Research at Perimeter Institute was supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Economic Development & Innovation.


References

[1] Coleman A. J.. Rev. Mod. Phys., 1963, 35: 668 CrossRef ADS Google Scholar

[2] Erdahl R. M.. J. Math. Phys., 1972, 13: 1608 CrossRef ADS Google Scholar

[3] A. A. Klyachko, in Journal of Physics: Conference Series, 36 (IOP Publishing, 2006) p.72. Google Scholar

[4] R. Erdahl and B. Jin, in Many-Electron Densities and Reduced Density Matrices, Mathematical and Computational Chemistry, edited by J. Cioslowski (Springer US, 2000) pp. 57-84. Google Scholar

[5] Schwerdtfeger C. A., Mazziotti D. A.. J. Chem. Phys., 2009, 130: 224102 CrossRef ADS Google Scholar

[6] Y.-K. Liu, in Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, Lecture Notes in Computer Science, 4110, edited by J. Diaz, K. Jansen, J. D. Rolim, and U. Zwick (Springer Berlin Heidelberg, 2006) pp. 438-449. Google Scholar

[7] Liu Y. K., Christandl M., Verstraete F.. Phys. Rev. Lett., 2007, 98: 110503 CrossRef ADS Google Scholar

[8] Wei T. C., Mosca M., Nayak A.. Phys. Rev. Lett., 2010, 104: 040501 CrossRef Google Scholar

[9] Verstraete F., Cirac J. I.. Phys. Rev. B, 2006, 73: 094423 CrossRef ADS Google Scholar

[10] Gidofalvi G., Mazziotti D. A.. Phys. Rev. A, 2006, 74: 012501 CrossRef ADS Google Scholar

[11] Chen J., Ji Z., Li C. K., Poon Y. T., Shen Y., Yu N., Zeng B., Zhou D.. New J. Phys., 2015, 17: 083019 CrossRef ADS arXiv Google Scholar

[12] V. Zauner, L. Vanderstraeten, D. Draxler, Y. Lee, and F. Verstraete, arXiv preprint: 1412.7642 (2014). Google Scholar

[13] Chen J. Y., Ji Z., Liu Z. X., Shen Y., Zeng B.. Phys. Rev. A, 2016, 93: 012309 CrossRef ADS arXiv Google Scholar

[14] J.-Y. Chen, Z. Ji, Z.-X. Liu, X. Qi, N. Yu, B. Zeng, and D. Zhou, arXiv preprint,. Google Scholar

[15] J. W. Gibbs, Transcations of the Connecticut Academy 2, 309 (1873). Google Scholar

[16] J. W. Gibbs, Transcations of the Connecticut Academy 2, 382 (1873). Google Scholar

[17] J. W. Gibbs, Transcations of the Connecticut Academy 3, 108 (1875). Google Scholar

[18] R. B. Israel, Convexity in the Theory of Lattice Gases (Princeton University Press, 1979). Google Scholar

[19] St?rmer E.. J. Funct. Anal., 1969, 3: 48 CrossRef Google Scholar

[20] R. L. Hudson and G. R. Moody, Probability Theory and Related Fields 33, 343 (1976). Google Scholar

[21] Lewin M., Nam P. T., Rougerie N.. Adv. Math., 2014, 254: 570 CrossRef Google Scholar

[22] Pucha?a Z., Gawron P., Miszczak J. A., Skowronek , Choi M. D., ?yczkowski K.. Linear Algebra its Appl., 2011, 434: 327 CrossRef Google Scholar

[23] Dirr G., Helmke U., Kleinsteuber M., Schulte-Herbrüggen T.. Linear Multilinear Algebra, 2008, 56: 27 CrossRef Google Scholar

[24] Duan R., Feng Y., Ying M.. Phys. Rev. Lett., 2008, 100: 020503 CrossRef ADS arXiv Google Scholar

[25] Schulte-herbrüggen T., Dirr G., Helmke U., Glaser S. J.. Linear Multilinear Algebra, 2008, 56: 3 CrossRef Google Scholar

[26] Schulte-herbrüggen T., Glaser S. J., Dirr G., Helmke U.. Rev. Math. Phys., 2010, 22: 597 CrossRef ADS arXiv Google Scholar

[27] Gawron P., Pucha?a Z., Miszczak J. A., Skowronek , Z?yczkowski K.. J. Math. Phys., 2010, 51: 102204 CrossRef ADS arXiv Google Scholar

[28] B. Zeng, X. Chen, D.-L. Zhou, and X.-G. Wen, arXiv preprint:1508.02595 (2015). Google Scholar

[29] Y.-H. Au-Yeung and Y.-T. Poon, SEA Bull. Math. 3, 85 (1979). Google Scholar

[30] Pucha?a Z., Gawron P., Miszczak J. A., Skowronek , Choi M. D., ?yczkowski K.. Linear Algebra its Appl., 2011, 434: 327 CrossRef Google Scholar

[31] Chen J., Ji Z., Zeng B., Zhou D. L.. Phys. Rev. A, 2012, 86: 022339 CrossRef ADS arXiv Google Scholar

[32] Binding P., Li C. K.. Linear Algebra its Appl., 1991, 151: 157 CrossRef Google Scholar

[33] H. Dirnb?ck and H. Stachel, Journal for Geometry and Graphics 1, 105 (1997). Google Scholar

[34] K. Szyma nski, S. Weis, and K. ?BZyczkowski, arXiv preprint:1603.06569 (2016). Google Scholar

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1