First-principles calculations show that the pulse laser induced graphite-to-diamond phase transition is related to the lattice stress generated by the excited carriers, termed as “quantum electronic stress (QES)”. We found that the excited carriers in graphite generate a large anisotropic QES that increases linearly with the increasing carrier density. Using the QES as a guiding parameter, structural relaxation spontaneously transforms the graphite phase into the diamond phase, as the QES is reduced and minimized. Our results suggest that the concept of QES can be generally applied as a good measure to characterize the pulse laser induced phase transitions, in analogy to pressure induced phase transitions.
This work was supported by the National Natural Science Foundation of China (Grant No. 21603210), Chinese Youth 1000 Talents Program, the Fundamental Research Funds for the Central Universities, and the United States Department of Energy Basic Energy Sciences (Grant No. DE-FG02-04ER46148). We also thank the Supercomputing Center at University of Science and Technology of China, National Energy Research Scientific Computing Center and Center for High Performance Computing at University of Utah for providing the computing resources.
[1] Clarke R., Uher C.. Adv. Phys., 1984, 33: 469 CrossRef Google Scholar
[2]
K. Nasu,
[3] Kanasaki J., Inami E., Tanimura K., Ohnishi H., Nasu K.. Phys. Rev. Lett., 2009, 102: 087402 CrossRef ADS Google Scholar
[4] Raman R. K., Murooka Y., Ruan C. Y., Yang T., Berber S., Tománek D.. Phys. Rev. Lett., 2008, 101: 077401 CrossRef ADS arXiv Google Scholar
[5] Hu H., Liu M., Wang Z. F., Zhu J., Wu D., Ding H., Liu Z., Liu F.. Phys. Rev. Lett., 2012, 109: 055501 CrossRef ADS arXiv Google Scholar
[6] Nielsen O. H., Martin R. M.. Phys. Rev. Lett., 1983, 50: 697 CrossRef ADS Google Scholar
[7] Tao J., Vignale G., Tokatly I. V.. Phys. Rev. Lett., 2008, 100: 206405 CrossRef ADS arXiv Google Scholar
[8] Hu H., Gao H. J., Liu F.. Phys. Rev. Lett., 2008, 101: 216102 CrossRef ADS Google Scholar
[9] Zhu J., Liu F., Stringfellow G. B., Wei S. H.. Phys. Rev. Lett., 2010, 105: 195503 CrossRef ADS Google Scholar
[10] Huang B., Liu M., Su N., Wu J., Duan W., Gu B. L., Liu F.. Phys. Rev. Lett., 2009, 102: 166404 CrossRef ADS arXiv Google Scholar
[11] Liu M., Han Y., Tang L., Jia J. F., Xue Q. K., Liu F.. Phys. Rev. B, 2012, 86: 125427 CrossRef ADS arXiv Google Scholar
[12] Kresse G., Hafner J.. Phys. Rev. B, 1993, 47: 558 CrossRef ADS Google Scholar
[13]
N. W. Ashcroft, and N. D. Mermin,
[14] Van de Walle C. G., Martin R. M.. Phys. Rev. B, 1987, 35: 8154 CrossRef ADS Google Scholar
[15] Scandolo S., Bernasconi M., Chiarotti G. L., Focher P., Tosatti E.. Phys. Rev. Lett., 1995, 74: 4015 CrossRef ADS Google Scholar
[16] Tateyama Y., Ogitsu T., Kusakabe K., Tsuneyuki S.. Phys. Rev. B, 1996, 54: 14994 CrossRef ADS Google Scholar
[17] Meng S., Ren J., Kaxiras E.. Nano Lett., 2008, 8: 3266 CrossRef ADS Google Scholar
Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有
京ICP备18024590号-1