Two-photon reduction: a cost-effective method for fabrication of functional metallic nanostructures

logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 60, Issue 3: 034201(2017) https://doi.org/10.1007/s11433-016-0447-6

Two-photon reduction: a cost-effective method for fabrication of functional metallic nanostructures

More info
  • ReceivedNov 9, 2016
  • AcceptedJan 3, 2017
  • PublishedJan 13, 2017
PACS numbers

Abstract

Metallic nanostructures have underpinned plasmonic-based advanced photonic devices in a broad range of research fields over the last decade including physics, engineering, material science and bioscience. The key to realizing functional plasmonic resonances that can manipulate light at the optical frequencies relies on the creation of conductive metallic structures at the nanoscale with low structural defects. Currently, most plasmonic nanostructures are fabricated either by electron beam lithography (EBL) or by focused ion beam (FIB) milling, which are expensive, complicated and time-consuming. In comparison, the direct laser writing (DLW) technique has demonstrated its high spatial resolution and cost-effectiveness in three-dimensional fabrication of micro/nanostructures. Furthermore, the recent breakthroughs in superresolution nanofabrication and parallel writing have significantly advanced the fabrication resolution and throughput of the DLW method and made it one of the promising future nanofabrication technologies with low-cost and scalability. In this review, we provide a comprehensive summary of the state-of-the-art DLW fabrication technology for nanometer scale metallic structures. The fabrication mechanisms, different material choices, fabrication capability, including resolution, conductivity and structure surface smoothness, as well as the characterization methods and achievable devices for different applications are presented. In particular, the development trends of the field and the perspectives for future opportunities and challenges are provided at the end of the review. It has been demonstrated that the quality of the metallic structures fabricated using the DLW method is excellent compared with other methods providing a new and enabling platform for functional nanophotonic device fabrication.


Acknowledgment

This work was supported by the Australian Research Council through the Discovery Early Career Researcher Award Scheme (Grant No. DE120100291), and the Discovery Project Scheme (Grant No. DP150102972).


References

[1] Lindquist N. C., Nagpal P., McPeak K. M., Norris D. J., Oh S. H.. Rep. Prog. Phys., 2012, 75: 036501 CrossRef ADS Google Scholar

[2] K. Terzaki, N. Vasilantonakis, A. Gaidukeviciute, C. Reinhardt, C. Fotakis, M. Vamvakaki, and M. Farsari, Opt. Mater. Express 1, 586 (2011). Google Scholar

[3] Duan X. M., Sun H. B., Kaneko K., Kawata S.. Thin Solid Films, 2004, 453-454: 518 CrossRef ADS Google Scholar

[4] Hidai H., Tokura H.. Appl. Surface Sci., 2001, 174: 118 CrossRef ADS Google Scholar

[5] Kim D., Jeong S., Park B. K., Moon J.. Appl. Phys. Lett., 2006, 89: 264101 CrossRef ADS Google Scholar

[6] Gupta A., Jagannathan R.. Appl. Phys. Lett., 1987, 51: 2254 CrossRef ADS Google Scholar

[7] Cacouris T., Scelsi G., Shaw P., Scarmozzino R., Osgood R. M., Krchnavek R. R.. Appl. Phys. Lett., 1988, 52: 1865 CrossRef ADS Google Scholar

[8] Radke A., Gissibl T., Klotzbücher T., Braun P. V., Giessen H.. Adv. Mater., 2011, 23: 3018 CrossRef Google Scholar

[9] Shukla S., Vidal X., Furlani E. P., Swihart M. T., Kim K. T., Yoon Y. K., Urbas A., Prasad P. N.. ACS Nano, 2011, 5: 1947 CrossRef Google Scholar

[10] Son Y., Lim T. W., Yang D. Y., Prabhakaran P., Lee K. S., Bosson J., Stephan O., Baldeck P. L.. IJNM, 2010, 6: 219 CrossRef Google Scholar

[11] Kang S. Y., Vora K., Mazur E.. Nanotechnology, 2015, 26: 121001 CrossRef ADS Google Scholar

[12] Cao Y., Gu M.. Appl. Phys. Lett., 2013, 103: 213104 CrossRef ADS Google Scholar

[13] Seisyan R. P.. Tech. Phys., 2011, 56: 1061 CrossRef Google Scholar

[14] Guo L. J.. Adv. Mater., 2007, 19: 495 CrossRef Google Scholar

[15] Vieu C., Carcenac F., Pépin A., Chen Y., Mejias M., Lebib A., Manin-Ferlazzo L., Couraud L., Launois H.. Appl. Surface Sci., 2000, 164: 111 CrossRef ADS Google Scholar

[16] Giannuzzi L. A., Stevie F. A.. Micron, 1999, 30: 197 CrossRef Google Scholar

[17] Luo X., Ishihara T.. Appl. Phys. Lett., 2004, 84: 4780 CrossRef ADS Google Scholar

[18] Fang N., Lee H., Sun C., Zhang X.. Science, 2005, 308: 534 CrossRef ADS Google Scholar

[19] Gao P., Yao N., Wang C., Zhao Z., Luo Y., Wang Y., Gao G., Liu K., Zhao C., Luo X.. Appl. Phys. Lett., 2015, 106: 093110 CrossRef ADS Google Scholar

[20] Chong T. C., Hong M. H., Shi L. P.. Laser Photon. Rev., 2010, 4: 123 CrossRef Google Scholar

[21] Chrisey D. B., Pique A., Fitz-Gerald J., Auyeung R. C. Y., McGill R. A., Wu H. D., Duignan M.. Appl. Surface Sci., 2000, 154-155: 593 CrossRef ADS Google Scholar

[22] Hossain M. M., Chen G., Jia B., Wang X. H., Gu M.. Opt. Express, 2010, 18: 9048 CrossRef Google Scholar

[23] Hossain M. M., Gu M.. Laser Photon. Rev., 2014, 8: 233 CrossRef Google Scholar

[24] Jia B., Li J., Gu M.. Aust. J. Chem., 2007, 60: 484 CrossRef Google Scholar

[25] Kaehr B., Erta? N., Nielson R., Allen R., Hill R. T., Plenert M., Shear J. B.. Anal. Chem., 2006, 78: 3198 CrossRef Google Scholar

[26] Li J., Jia B., Zhou G., Gu M.. Opt. Express, 2006, 14: 10740 CrossRef ADS Google Scholar

[27] Zhang Y. L., Chen Q. D., Xia H., Sun H. B.. Nano Today, 2010, 5: 435 CrossRef Google Scholar

[28] Kley E. B.. Microelectronic Eng., 1997, 34: 261 CrossRef Google Scholar

[29] F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, Appl. Phys. A 77, 229 (2003). Google Scholar

[30] LaFratta C. N., Lim D., O'Malley K., Baldacchini T., Fourkas J. T.. Chem. Mater., 2006, 18: 2038 CrossRef Google Scholar

[31] Li L., Hong M., Schmidt M., Zhong M., Malshe A., Huis in’tVeld B., Kovalenko V.. CIRP Ann.-Manuf. Tech., 2011, 60: 735 CrossRef Google Scholar

[32] Williams H. E., Luo Z., Kuebler S. M.. Opt. Express, 2012, 20: 25030 CrossRef ADS Google Scholar

[33] Zhao Q. Z., Qiu J. R., Jiang X. W., Dai E. W., Zhou C. H., Zhu C. S.. Opt. Express, 2005, 13: 2089 CrossRef ADS Google Scholar

[34] Sun H. B., Kawata S.. J. Lightw. Technol., 2003, 21: 624 CrossRef ADS Google Scholar

[35] Zhang W., Yao Y. L.. J. Manuf. Sci. Eng., 2002, 124: 369 CrossRef Google Scholar

[36] Gansel J. K., Thiel M., Rill M. S., Decker M., Bade K., Saile V., von Freymann G., Linden S., Wegener M.. Science, 2009, 325: 1513 CrossRef ADS Google Scholar

[37] Liu N., Guo H., Fu L., Kaiser S., Schweizer H., Giessen H.. Nat. Mater., 2008, 7: 31 CrossRef ADS Google Scholar

[38] Maruo S., Fourkas J. T.. Laser Photon. Rev., 2008, 2: 100 CrossRef Google Scholar

[39] Cao Y. Y., Takeyasu N., Tanaka T., Duan X. M., Kawata S.. Small, 2009, 5: 1144 CrossRef Google Scholar

[40] Tanaka T., Ishikawa A., Kawata S.. Appl. Phys. Lett., 2006, 88: 081107 CrossRef ADS Google Scholar

[41] Li J., Hossain M. M., Jia B., Buso D., Gu M.. Opt. Express, 2010, 18: 4491 CrossRef ADS Google Scholar

[42] Bi Y. G., Feng J., Li Y. F., Zhang Y. L., Liu Y. S., Chen L., Liu Y. F., Guo L., Wei S., Sun H. B.. ACS Photon., 2014, 1: 690 CrossRef Google Scholar

[43] Zhang Y. L., Guo L., Xia H., Chen Q. D., Feng J., Sun H. B.. Adv. Opt. Mater., 2014, 2: 10 CrossRef Google Scholar

[44] Lau D., Furman S.. Appl. Surface Sci., 2008, 255: 2159 CrossRef ADS Google Scholar

[45] Huang L., Liu Y., Ji L. C., Xie Y. Q., Wang T., Shi W. Z.. Carbon, 2011, 49: 2431 CrossRef Google Scholar

[46] Li B., Zhang X., Li X., Wang L., Han R., Liu B., Zheng W., Li X., Liu Y.. Chem. Commun., 2010, 46: 3499 CrossRef Google Scholar

[47] Tabrizi S., Cao Y., Cumming B. P., Jia B., Gu M.. Adv. Opt. Mater., 2016, 4: 529 CrossRef Google Scholar

[48] N. V. Tkachenko, Optical Spectroscopy: Methods and Instrumentations (Elsevier, Amsterdam, 2006). Google Scholar

[49] Kachynski A. V., Pliss A., Kuzmin A. N., Ohulchanskyy T. Y., Baev A., Qu J., Prasad P. N.. Nat. Photon, 2014, 8: 455 CrossRef ADS Google Scholar

[50] Ishikawa A.. JLMN, 2012, 7: 11 CrossRef Google Scholar

[51] S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, Berlin, Heidelberg, Dordrecht, and New York, 2007). Google Scholar

[52] He G. S., Xu G. C., Prasad P. N., Reinhardt B. A., Bhatt J. C., Dillard A. G.. Opt. Lett., 1995, 20: 435 CrossRef ADS Google Scholar

[53] K. Miura, J. R. Qiu, T. Mitsuyu, and K. Hirao, Proc. SPIE, 3618, 141 (1999). Google Scholar

[54] Qiu J.. Chem. Record, 2004, 4: 50 CrossRef Google Scholar

[55] Li Y., Chemerisov S., Lewellen J.. Phys. Rev. ST Accel. Beams, 2009, 12: 020702 CrossRef ADS Google Scholar

[56] D. W. Lewis, Resource Conservation by Use of Iron and Steel Slags, in Extending Aggregate Resources (American Society for Testing and Materials, 1982), pp. 31-42. Google Scholar

[57] Q. Liu, X. Duan, and C. Peng, Novel optical technologies for nanofabrication (Springer, New York, 2014). Google Scholar

[58] Sakamoto M., Fujistuka M., Majima T.. J. Photochem. Photobio. C-Photochem. Rev., 2009, 10: 33 CrossRef Google Scholar

[59] M. Bom, and E. Wolf, Principles of Optics (Pergamon, New York, 1980), pp. 747-754. Google Scholar

[60] Zhou Z., Xu J., Liao Y., Cheng Y., Xu Z., Sugioka K., Midorikawa K.. Opt. Commun., 2009, 282: 1370 CrossRef ADS Google Scholar

[61] Quick A. S., Rothfuss H., Welle A., Richter B., Fischer J., Wegener M., Barner-Kowollik C.. Adv. Funct. Mater., 2014, 24: 3571 CrossRef Google Scholar

[62] Kymakis E., Savva K., Stylianakis M. M., Fotakis C., Stratakis E.. Adv. Funct. Mater., 2013, 23: 2742 CrossRef Google Scholar

[63] Kaneko K., Sun H. B., Duan X. M., Kawata S.. Appl. Phys. Lett., 2003, 83: 1426 CrossRef ADS Google Scholar

[64] Brown W. J., Anderson S. G., Barty C. P. J., Betts S. M., Booth R., Crane J. K., Cross R. R., Fittinghoff D. N., Gibson D. J., Hartemann F. V., Hartouni E. P., Kuba J., Le Sage G. P., Slaughter D. R., Tremaine A. M., Wootton A. J., Springer P. T., Rosenzweig J. B.. Phys. Rev. ST Accel. Beams, 2004, 7: 060702 CrossRef ADS Google Scholar

[65] Hada H., Yonezawa Y., Yoshida Akio Y., Kurakake A.. J. Phys. Chem., 1976, 80: 2728 CrossRef Google Scholar

[66] B. Fisette, and M. Meunier, Proc. SPIE, 5578, 677 (2004). Google Scholar

[67] Stellacci F., Bauer C. A., Meyer-Friedrichsen T., Wenseleers W., Alain V., Kuebler S. M., Pond S. J. K., Zhang Y., Marder S. R., Perry J. W.. Adv. Mater., 2002, 14: 194 CrossRef Google Scholar

[68] Baldacchini T., Pons A. C., Pons J., Lafratta C. N., Fourkas J. T., Sun Y., Naughton M. J.. Opt. Express, 2005, 13: 1275 CrossRef ADS Google Scholar

[69] Tsutsumi N., Nagata K., Sakai W.. Appl. Phys. A, 2011, 103: 421 CrossRef ADS Google Scholar

[70] Ishikawa A., Tanaka T., Kawata S.. Appl. Phys. Lett., 2006, 89: 113102 CrossRef ADS Google Scholar

[71] Cao Y. Y., Dong X. Z., Takeyasu N., Tanaka T., Zhao Z. S., Duan X. M., Kawata S.. Appl. Phys. A, 2009, 96: 453 CrossRef ADS Google Scholar

[72] Lu W. E., Zhang Y. L., Zheng M. L., Jia Y. P., Liu J., Dong X. Z., Zhao Z. S., Li C. B., Xia Y., Ye T. C., Duan X. M.. Opt. Mater. Express, 2013, 3: 1660 CrossRef Google Scholar

[73] Itakura T., Torigoe K., Esumi K.. Langmuir, 1995, 11: 4129 CrossRef Google Scholar

[74] Xu B. B., Zhang R., Wang H., Liu X. Q., Wang L., Ma Z. C., Chen Q. D., Xiao X. Z., Han B., Sun H. B.. Nanoscale, 2012, 4: 6955 CrossRef ADS Google Scholar

[75] Lu W. E., Zheng M. L., Chen W. Q., Zhao Z. S., Duan X. M.. Phys. Chem. Chem. Phys., 2012, 14: 11930 CrossRef ADS Google Scholar

[76] Gan Z., Cao Y., Evans R. A., Gu M.. Nat. Commun., 2013, 4: 2061 CrossRef ADS Google Scholar

[77] Smits F. M.. Bell Syst. Technical J., 1958, 37: 711 CrossRef Google Scholar

[78] Xu B. B., Xia H., Niu L. G., Zhang Y. L., Sun K., Chen Q. D., Xu Y., Lv Z. Q., Li Z. H., Misawa H., Sun H. B.. Small, 2010, 6: 1762 CrossRef Google Scholar

[79] Xu B. B., Zhang Y. L., Xia H., Dong W. F., Ding H., Sun H. B.. Lab Chip, 2013, 13: 1677 CrossRef Google Scholar

[80] Wang H., Liu S., Zhang Y. L., Wang J. N., Wang L., Xia H., Chen Q. D., Ding H., Sun H. B.. Sci. Tech. Adv. Mater., 2015, 16: 024805 CrossRef ADS Google Scholar

[81] Vora K., Kang S. Y., Mazur E.. JoVE, 2012, 69: UNSP e4399 CrossRef Google Scholar

[82] Vora K., Kang S. Y., Shukla S., Mazur E.. Appl. Phys. Lett., 2012, 100: 063120 CrossRef ADS Google Scholar

[83] Ameloot R., Roeffaers M. B. J., De Cremer G., Vermoortele F., Hofkens J., Sels B. F., De Vos D. E.. Adv. Mater., 2011, 23: 1788 CrossRef Google Scholar

[84] Smith D. R., Padilla W. J., Vier D. C., Nemat-Nasser S. C., Schultz S.. Phys. Rev. Lett., 2000, 84: 4184 CrossRef ADS Google Scholar

[85] N. Engheta, and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (John Wiley & Sons, Hoboken, 2006). Google Scholar

[86] S. Zouhdi, S. Ari, and P. Alexey, Metamaterials and Plasmonics: Fundamentals, Modelling, Applications (Springer Science & Business Media, Berlin, Heidelberg, Dordrecht, and New York, 2008). Google Scholar

[87] Plum E., Liu X. X., Fedotov V. A., Chen Y., Tsai D. P., Zheludev N. I.. Phys. Rev. Lett., 2009, 102: 113902 CrossRef ADS Google Scholar

[88] F. Capolino, Theory and Phenomena of Metamaterials (CRC Press, New York, 2009). Google Scholar

[89] Vallecchi A., Campione S., Capolino F.. J. Nanophoton, 2010, 4: 041577 CrossRef ADS Google Scholar

[90] Marques R., Mesa F., Martel J., Medina F.. IEEE Trans. Antennas Propagat., 2003, 51: 2572 CrossRef ADS Google Scholar

[91] Liu R., Cui T. J., Huang D., Zhao B., Smith D. R.. Phys. Rev. E, 2007, 76: 026606 CrossRef ADS Google Scholar

[92] C. Caloz, and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (John Wiley & Sons, Hoboken, 2005). Google Scholar

[93] Iyer A. K., Kremer P. C., Eleftheriades G. V.. Opt. Express, 2003, 11: 696 CrossRef ADS Google Scholar

[94] Shalaev V. M.. Nat. Photon., 2007, 1: 41 CrossRef ADS Google Scholar

[95] Grzegorczyk T. M., Kong J. A.. J. Electromag. Waves Appl., 2006, 20: 2053 CrossRef Google Scholar

[96] Xu W., Li L. W., Yao H. Y., Yeo T. S., Wu Q.. J. Electromag. Waves Appl., 2006, 20: 13 CrossRef Google Scholar

[97] Maier S. A.. Opt. Express, 2006, 14: 1957 CrossRef ADS Google Scholar

[98] Moskovits M.. J. Raman Spectrosc., 2005, 36: 485 CrossRef ADS Google Scholar

[99] Lin C. H., Jiang L., Chai Y. H., Xiao H., Chen S. J., Tsai H. L.. Opt. Express, 2009, 17: 21581 CrossRef Google Scholar

[100] Izquierdo-Lorenzo I., Jradi S., Adam P. M.. RSC Adv., 2014, 4: 4128 CrossRef Google Scholar

[101] Lee S. J., Piorek B. D., Meinhart C. D., Moskovits M.. Nano Lett., 2010, 10: 1329 CrossRef ADS Google Scholar

[102] Xu B. B., Ma Z. C., Wang L., Zhang R., Niu L. G., Yang Z., Zhang Y. L., Zheng W. H., Zhao B., Xu Y., Chen Q. D., Xia H., Sun H. B.. Lab Chip, 2011, 11: 3347 CrossRef Google Scholar

[103] Xu B. B., Zhang R., Liu X. Q., Wang H., Zhang Y. L., Jiang H. B., Wang L., Ma Z. C., Ku J. F., Xiao F. S., Sun H. B.. Chem. Commun., 2012, 48: 1680 CrossRef Google Scholar

[104] J. G. Ng, D. E. G. Watson, J. Sigwarth, A. McCarthy, H. Suyal, D. P. Hand, and M. P. Y. Desmulliez, An Additive Method for Photopatterning of Metals on Flexible Substrates, in Proceedings of the 36th International MATADOR Conference (Springer, London, 2010), pp. 389-392. Google Scholar

[105] Huang J. A., Zhang Y. L., Ding H., Sun H. B.. Adv. Opt. Mater., 2015, 3: 618 CrossRef Google Scholar

[106] Lin H., Jia B., Gu M.. Opt. Lett., 2011, 36: 406 CrossRef ADS Google Scholar

[107] Lin H., Gu M.. Appl. Phys. Lett., 2013, 102: 084103 CrossRef ADS Google Scholar

[108] Formanek F., Takeyasu N., Tanaka T., Chiyoda K., Ishikawa A., Kawata S.. Opt. Express, 2006, 14: 800 CrossRef ADS Google Scholar

[109] Castellana E. T., Kataoka S., Albertorio F., Cremer P. S.. Anal. Chem., 2006, 78: 107 CrossRef Google Scholar

[110] Maruo S., Saeki T.. Opt. Express, 2008, 16: 1174 CrossRef ADS Google Scholar

[111] Furlani E. P., Jee H. S., Oh H. S., Baev A., Prasad P. N.. Adv. OptoElectron., 2012, 2012: 1 CrossRef Google Scholar

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1