After successfully growing single-crystal TaP, we measured its longitudinal resistivity ($\rho_{xx}$) and Hall resistivity ($\rho_{yx}$) at magnetic fields up to 9 T in the temperature range of 2-300 K. At 8 T, the magnetoresistance (MR) reached 3.28 $\times$ 10$^5$$\%$ at 2 K, 176$\%$ at 300 K. Neither value appeared saturated. We confirmed that TaP is a hole-electron compensated semimetal with a low carrier concentration and high hole mobility of $\mu_{\mathrm{h}}$=3.71 $\times$ $10^5$ cm$^2$/V s, and found that a magnetic-field-induced metal-insulator transition occurs at room temperature. Remarkably, because a magnetic field (H) was applied in parallel to the electric field (E), a negative MR due to a chiral anomaly was observed and reached $-$3000$\%$ at 9 T without any sign of saturation, either, which is in contrast to other Weyl semimetals (WSMs). The analysis of the Shubnikov-de Haas (SdH) oscillations superimposed on the MR revealed that a nontrivial Berry's phase with a strong offset of 0.3958, which is the characteristic feature of charge carriers enclosing a Weyl node. These results indicate that TaP is a promising candidate not only for revealing fundamental physics of the WSM state but also for some novel applications.
National Basic Research Program of China(2012CB821404)
National Natural Science Foundation of China(11204059)
National Basic Research Program of China(2015CB921004)
National Basic Research Program of China(2011CBA00103)
National Natural Science Foundation of China(11374261)
This work was supported by the National Basic Research Program of China (Grant Nos. 2015CB921004, 2012CB821404 and 2011CBA00103), the National Natural Science Foundation of China (Grant Nos. 11374261 and 11204059), Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ12A04007) and the Fundamental Research Funds for the Central Universities of China.
[1] Murakami S.. New J. Phys., 2007, 9: 356 CrossRef Google Scholar
[2] Balents L.. Physics, 2011, 4: 36 CrossRef Google Scholar
[3] Burkov A. A., Balents L.. Phys. Rev. Lett., 2011, 107: 127205 CrossRef Google Scholar
[4] Burkov A. A., Hook M. D., Balents L.. Phys. Rev. B, 2011, 84: 235126 CrossRef Google Scholar
[5] Halasz G. B., Balents L.. Phys. Rev. B, 2012, 85: 035103 CrossRef Google Scholar
[6] Wan X. G., Turner A. M., Vishwanath A., Savrasov S.. Phys. Rev. B, 2011, 83: 205101 CrossRef Google Scholar
[7] Xu G., Weng H. M., Wang Z. J., Dai X., Fang Z.. Phys. Rev. Lett., 2011, 107: 186806 CrossRef Google Scholar
[8] Liu J. P., Vanderbilt D.. Phys. Rev. B, 2014, 90: 155316 CrossRef Google Scholar
[9] Weng H. M., Fang C., Fang Z., Bernevig B. A., Dai X.. Phys. Rev. X, 2015, 5: 011029 Google Scholar
[10] Huang S. M., Xu S. Y., Belopolski I., Lee C. C., Chang G. Q., Wang B. K., Alidoust N., Bian G., Neupane M., Zhang C. L., Jia S., Bansil A., Lin H., Hasan M. Z.. Nat. Commun., 2015, 6: 7373 CrossRef Google Scholar
[11] Lv B. Q., Xu N., Weng H. M., Ma J. Z., Richard P., Huang X. C., Zhao L. X., Chen G. F., Matt C. E., Bisti F., Strocov V. N., Mesot J., Fang Z., Dai X., Qian T., Shi M., Ding H.. Nat. Phys., 2015, 11: 724 CrossRef Google Scholar
[12] Shekhar C., Nayak A. K., Sun Y., Schmidt M., Nicklas M., Leermakers I., Zeitler U., Skourski Y., Wosnitza J., Liu Z. K., Chen Y. L., Schnelle W., Borrmann H., Grin Y., Felser C., Yan B. H.. Nat. Phys., 2015, 11: 645 CrossRef Google Scholar
[13] Huang X. C., Zhao L. X., Long Y.J., Wang P. P., Chen D., Yang Z. H., Liang H., Xue M. Q., Weng H. M., Fang Z., Dai X., Chen G. F.. Phys. Rev. X, 2015, 5: 031023 Google Scholar
[14] C. L. Zhang, Z. J. Yuan, S. Y. Xu, Z. Q. Lin, B. B. Tong, M. Z. Hasan, J. F. Wang, C. Zhang, and S. Jia, [arXiv: 1502.00251].. Google Scholar
[15] Z. Wang, Y. Zheng, Z. X. Shen, Y. Zhou, X. J. Yang, Y. P. Li, C. M. Feng, and Z. A. Xu, [arXiv: 1506.00924].. Google Scholar
[16] Lenz J. E.. Proc. IEEE, 1990, 78: 973 CrossRef Google Scholar
[17] Moritomo Y., Asamitsu A., Kuwahara H., Tokura Y.. Nature, 1996, 380: 141 CrossRef Google Scholar
[18] Daughton J.. J. Magn. Magn. Mater., 1999, 192: 334 CrossRef Google Scholar
[19] Egeihoff W. F., Ha T., Misra R. D. K., Kadmon Y., Nir J., Powell C. J., Stiles M. D., McMichael R. D., Lin C. L., Sivertsen J. M., Judy J. H., Takano K., Berkowitz A. E., Anthony T. C., Brug J. A.. J. Appl. Phys., 1995, 78: 273 CrossRef Google Scholar
[20] Ramirez A. P., Cava R. J., Krajewski J.. Nature, 1997, 386: 156\linebreak CrossRef Google Scholar
[21] Jin S., McCormack M., Tiefel T. H., Ramesh R.. J. Appl. Phys., 1994, 76: 6929 CrossRef Google Scholar
[22] Yang F. Y., Liu K., Hong K. M., Reich D. H., Searson P. C., Chien C. L.. Science, 1999, 284: 1335 CrossRef Google Scholar
[23] Xu R., Husmann A., Rosenbaum T. F., Saboungi M. L., Enderby J. E., Littlewood P. B.. Nature, 1997, 390: 57 CrossRef Google Scholar
[24] Ishiwata1 S., Shiomi Y., Lee J. S., Bahramy M. S., Suzuki T., Uchida M., Arita R., Taguchi Y., Tokura Y.. Nat. Mater., 2013, 12: 512 CrossRef Google Scholar
[25] Solin S. A., Thio T., Hines D. R., Heremans J. J.. Science, 2000, 289: 1530 CrossRef Google Scholar
[26] Ali M. N., Xiong J., Flynn S., Tao J., Gibson Q. D., Schoop L. M., Liang T., Haldolaarachchige N., Hirschberger M., Ong N. P., Cava R. J.. Nature, 2014, 514: 205 Google Scholar
[27] X. J. Yang, Y. P. Li, Z. Wang, Y. Zhen, and Z. A. Xu, [arXiv: 1506.02283].. Google Scholar
[28] Kopelevich Y., Lemanov V. V., Moehleche S., Torres H. S.. Phys. Solid State, 1999, 41: 1959 CrossRef Google Scholar
[29] Kopelevich Y., Torres J. H. S., Sila R. R. da, Wrowka F., Kempa H., Esqyuinazi P.. Phys. Rev. Lett., 2003, 90: 156402 CrossRef Google Scholar
[30] Zhang W., Yu R., Feng W. X., Yao Y. Q., Weng H. M., Dai X., Fang Z.. Phys. Rev. Lett., 2011, 106: 156808 CrossRef Google Scholar
[31] He L. P., Hong X. C., Dong J. K., Pan J., Zhang Z., Zhang J., Li S. Y.. Phys. Rev. Lett., 2014, 113: 246402 CrossRef Google Scholar
[32] Ghimire N. J., Luo Y. K., Neupane M., Williams D. J., Bauer E. D., Ronning F.. J. Phys. Condens. Matter, 2015, 27: 152201 CrossRef Google Scholar
[33] A. B. Pippard, Magnetoresitance in Metals (Cambridge University Press, Cambridge, 1989).. Google Scholar
[34] N. Ramakrishnan, M. Milletari, and S. Adam, [arXiv: 1501.03815].. Google Scholar
[35] C. M. Hurd, The Hall Effect in Metals and Alloys (Cambridge University Press, Cambridge, 1972).. Google Scholar
[36] Adler S.. Phys. Rev., 1969, 177: 2426 CrossRef Google Scholar
[37] Bell J. S., Jackiw R.. Nuovo Cimento A, 1969, 60: 4 Google Scholar
[38] N. Xu, H. M. Weng, B. Q. Lv, C. Matt, J. Park, F. Bisti, V. N. Strocov, D. gawryluk, E. Pomjakushina, K. Conder, N. C. Plumb, M. Radovic, G. Autes, O. V. Yazyev, Z. Fang, X. Dai, G. Aeppli1, T. Qian, J. Mesot, H. Ding, and M. Shi, [arXiv: 1507.03983].. Google Scholar
[39] Kim H. J., Kim K. S., Wang J. F., Sasaki M., Satoh N., Ohnishi A., Kitaura M., Yang M., Li L.. Phys. Rev. Lett., 2013, 111: 246603 \linebreak CrossRef Google Scholar
[40] Mikitik G. P.. Y. V., 1999, Sharlai: Phys. Rev. Lett. \textbf{82}, 2147 Google Scholar
[41] Mikitik G. P.. Y. V., 2004, Sharlai: Phys. Rev. Lett. \textbf{93}, 106403 Google Scholar
[42] Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Katsnelson M. I., Grigorieva I. V., Dubonos S. V., Firsov A. A.. Nature, 2005, 438: 197 CrossRef Google Scholar
[43] Zhang Y., Tan Y. W., Stormer H. L., Kim P.. Nature, 2005, 438: 201 CrossRef Google Scholar
[44] Murakawa H., Bahramy M. S., Tokunaga M., Kohama Y., Bell C., Kaneko Y., Nagaosa N., Hwang H. Y., Tokura Y.. Science, 2013, 342: 1490 CrossRef Google Scholar
Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有
京ICP备18024590号-1