QKD system with fast active optical path length compensation

logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 60, Issue 6: 060311(2017) https://doi.org/10.1007/s11433-017-9026-8

QKD system with fast active optical path length compensation

More info
  • ReceivedJan 4, 2017
  • AcceptedMar 22, 2017
  • PublishedApr 14, 2017
PACS numbers

Abstract

We develop a quantum key distribution (QKD) system with fast active optical path length compensation. A rapid and reliable active optical path length compensation scheme is proposed and applied to a plug-and-play QKD system. The system monitors changes in key rates and controls it is own operation automatically. The system achieves its optimal performance within three seconds of operation, which includes a sifted key rate of 5.5 kbps and a quantum bit error rate of less than 2% after an abrupt temperature variation along the 25 km quantum channel. The system also operates well over a 24 h period while completing more than 60 active optical path length compensations.


Funded by

Korea Institute of Science and Technology-Electronics And Telecommunications Research Institute research program(2V05340)

the ICT R&D programs of Ministry of Science

Korea Institute of Science and Technology research program(2E27231)

ICT and Future Planning/Institute for Information & communications Technology Promotion(B0101-16-1355)


Acknowledgment

This work was supported by the ICT R&D programs of Ministry of Science, ICT and Future Planning/Institute for Information & Communications Technology Promotion (Grant No. B0101-16-1355), the Korea Institute of Science and Technology research program (Grant No. 2E27231), and Korea Institute of Science and Technology-Electronics And Telecommunications Research Institute research program (Grant No. 2V05340).


References

[1] Long G. L., Liu X. S.. Phys. Rev. A, 2002, 65: 032302 CrossRef ADS Google Scholar

[2] Deng F. G., Long G. L., Liu X. S.. Phys. Rev. A, 2003, 68: 042317 CrossRef ADS Google Scholar

[3] Deng F. G., Long G. L.. Phys. Rev. A, 2004, 69: 052319 CrossRef ADS Google Scholar

[4] Hu J. Y., Yu B., Jing M. Y., Xiao L. T., Jia S. T., Qin G. Q., Long G. L.. Light Sci. Appl., 2016, 5: e16144 CrossRef Google Scholar

[5] W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, 2016,. arXiv Google Scholar

[6] Hillery M., Bu?ek V., Berthiaume A.. Phys. Rev. A, 1999, 59: 1829 CrossRef ADS Google Scholar

[7] C. H. Bennett, G. Brassad, in Quantum cryptography: Public key distribution and coin tossing: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (IEEE, Bangalore, 1984), pp. 175–179. Google Scholar

[8] Ekert A. K.. Phys. Rev. Lett., 1991, 67: 661 CrossRef PubMed ADS Google Scholar

[9] Bennett C. H.. Phys. Rev. Lett., 1992, 68: 3121 CrossRef PubMed ADS Google Scholar

[10] Lo H. K., Ma X., Chen K.. Phys. Rev. Lett., 2005, 94: 230504 CrossRef PubMed ADS Google Scholar

[11] Noh T. G.. Phys. Rev. Lett., 2009, 103: 230501 CrossRef PubMed ADS arXiv Google Scholar

[12] Laing A., Scarani V., Rarity J. G., O’Brien J. L.. Phys. Rev. A, 2010, 82: 012304 CrossRef ADS arXiv Google Scholar

[13] Lo H. K., Curty M., Qi B.. Phys. Rev. Lett., 2012, 108: 130503 CrossRef PubMed ADS arXiv Google Scholar

[14] Wang S., Yin Z. Q., Chen W., He D. Y., Song X. T., Li H. W., Zhang L. J., Zhou Z., Guo G. C., Han Z. F.. Nat. Photon., 2015, 9: 832 CrossRef ADS Google Scholar

[15] Dixon A. R., Yuan Z. L., Dynes J. F., Sharpe A. W., Shields A. J.. Opt. Express, 2008, 16: 18790 CrossRef ADS arXiv Google Scholar

[16] Dixon A. R., Yuan Z. L., Dynes J. F., Sharpe A. W., Shields A. J.. Appl. Phys. Lett., 2010, 96: 161102 CrossRef ADS arXiv Google Scholar

[17] Townsend P. D.. Nature, 1997, 385: 47 CrossRef ADS Google Scholar

[18] Chen W., Han Z. F., Zhang T., Wen H., Yin Z. Q., Xu F. X., Wu Q. L., Liu Y., Zhang Y., Mo X. F., Gui Y. Z., Wei G., Guo G. C.. IEEE Photon. Tech. Lett., 2009, 21: 575 CrossRef ADS Google Scholar

[19] Chen T. Y., Wang J., Liang H., Liu W. Y., Liu Y., Jiang X., Wang Y., Wan X., Cai W. Q., Ju L., Chen L. K., Wang L. J., Gao Y., Chen K., Peng C. Z., Chen Z. B., Pan J. W.. Opt. Express, 2010, 18: 27217 CrossRef PubMed Google Scholar

[20] Wang S., Chen W., Yin Z. Q., Zhang Y., Zhang T., Li H. W., Xu F. X., Zhou Z., Yang Y., Huang D. J., Zhang L. J., Li F. Y., Liu D., Wang Y. G., Guo G. C., Han Z. F.. Opt. Lett., 2010, 35: 2454 CrossRef PubMed ADS arXiv Google Scholar

[21] Sasaki M., Fujiwara M., Ishizuka H., Klaus W., Wakui K., Takeoka M., Miki S., Yamashita T., Wang Z., Tanaka A., Yoshino K., Nambu Y., Takahashi S., Tajima A., Tomita A., Domeki T., Hasegawa T., Sakai Y., Kobayashi H., Asai T., Shimizu K., Tokura T., Tsurumaru T., Matsui M., Honjo T., Tamaki K., Takesue H., Tokura Y., Dynes J. F., Dixon A. R., Sharpe A. W., Yuan Z. L., Shields A. J., Uchikoga S., Legré M., Robyr S., Trinkler P., Monat L., Page J. B., Ribordy G., Poppe A., Allacher A., Maurhart O., L?nger T., Peev M., Zeilinger A.. Opt. Express, 2011, 19: 10387 CrossRef PubMed ADS arXiv Google Scholar

[22] Lee M. S., Park B. K., Woo M. K., Park C. H., Kim Y. S., Han S. W., Moon S.. Phys. Rev. A, 2016, 94: 062321 CrossRef Google Scholar

[23] Stucki D., Legré M., Buntschu F., Clausen B., Felber N., Gisin N., Henzen L., Junod P., Litzistorf G., Monbaron P., Monat L., Page J. B., Perroud D., Ribordy G., Rochas A., Robyr S., Tavares J., Thew R., Trinkler P., Ventura S., Voirol R., Walenta N., Zbinden H.. New J. Phys., 2011, 13: 123001 CrossRef ADS arXiv Google Scholar

[24] Jouguet P., Kunz-Jacques S., Debuisschert T., Fossier S., Diamanti E., Alléaume R., Tualle-Brouri R., Grangier P., Leverrier A., Pache P., Painchault P.. Opt. Express, 2012, 20: 14030 CrossRef PubMed Google Scholar

[25] Yoshino K., Ochi T., Fujiwara M., Sasaki M., Tajima A.. Opt. Express, 2013, 21: 31395 CrossRef PubMed Google Scholar

[26] Shimizu K., Honjo T., Fujiwara M., Ito T., Tamaki K., Miki S., Yamashita T., Terai H., Wang Z., Sasaki M.. J. Lightwave Tech., 2014, 32: 141 CrossRef ADS Google Scholar

[27] Wang S., Chen W., Yin Z. Q., Li H. W., He D. Y., Li Y. H., Zhou Z., Song X. T., Li F. Y., Wang D., Chen H., Han Y. G., Huang J. Z., Guo J. F., Hao P. L., Li M., Zhang C. M., Liu D., Liang W. Y., Miao C. H., Wu P., Guo G. C., Han Z. F.. Opt. Express, 2014, 22: 21739 CrossRef PubMed ADS arXiv Google Scholar

[28] Dixon A. R., Dynes J. F., Lucamarini M., Fr?hlich B., Sharpe A. W., Plews A., Tam S., Yuan Z. L., Tanizawa Y., Sato H., Kawamura S., Fujiwara M., Sasaki M., Shields A. J.. Opt. Express, 2015, 23: 7583 CrossRef PubMed ADS Google Scholar

[29] Wang S., Chen W., Guo J. F., Yin Z. Q., Li H. W., Zhou Z., Guo G. C., Han Z. F.. Opt. Lett., 2012, 37: 1008 CrossRef PubMed ADS arXiv Google Scholar

[30] Choi I., Young R. J., Townsend P. D.. New J. Phys., 2011, 13: 063039 CrossRef ADS Google Scholar

[31] Zhang H. F., Wang J., Cui K., Luo C. L., Lin S. Z., Zhou L., Liang H., Chen T. Y., Chen K., Pan J. W.. J. Lightwave Tech., 2012, 30: 3226 CrossRef ADS arXiv Google Scholar

[32] Zhang L. J., Wang Y. G., Yin Z. Q., Chen W., Yang Y., Zhang T., Huang D. J., Wang S., Li F. Y., Han Z. F.. Chin. Sci. Bull., 2011, 56: 2305 CrossRef Google Scholar

[33] J. Young. QKD system detector autocalibration based on bit-error rate, US Patent, US 11/110,227 (2005-04-20). Google Scholar

[34] Muller A., Herzog T., Huttner B., Tittel W., Zbinden H., Gisin N.. Appl. Phys. Lett., 1997, 70: 793 CrossRef ADS Google Scholar

[35] Ribordy G., Gautier J. D., Gisin N., Guinnard O., Zbinden H.. Electron. Lett., 1998, 34: 2116 CrossRef Google Scholar

[36] Altera Incorporation, Stratix III Device Handbook (Altera Inc., 2010). Google Scholar

[37] Micrel Incorporation, SY89295U Datasheet, (Micrel Inc., 2011). Google Scholar

[38] Yuan Z. L., Dixon A. R., Dynes J. F., Sharpe A. W., Shields A. J.. Appl. Phys. Lett., 2008, 92: 201104 CrossRef ADS arXiv Google Scholar

  • Figure 1

    (Color online) Overall architecture of the plug-and-play QKD system. C: circulator; BS: beam splitter; D1, D2: avalanche photo diodes; DL: delay line; PM: phase modulator; PBS: polarization beam splitter; QC: quantum channel; PD: photo diode; VOA: variable optical attenuator; SL: storage line; IM: intensity modulator; FM: faraday mirror.

  • Figure 2

    (Color online) Block diagram of the QKD control system based on an FPGA. PC: personal computer; DAC: digital-to-analog convertor; TIA: time interval analyzer; RNG: random number generator.

  • Figure 3

    (Color online) Flow chart of the proposed optical path length compensation algorithm.

  • Figure 4

    (Color online) Block diagram of both the serializer and the output gate pulses corresponding to uploaded 160 MHz parallel data. (a) Block diagram of the data uploader and transmitter circuit; (b) output signal of the serializer for two cases of timing information.

  • Figure 5

    (Color online) The probability distribution of required time for phase 1 (a) and phase 2 (b) with variance of the optimal timing during 24 h operation (c).

  • Figure 6

    (Color online) Count rate of the APD versus time for the cases of dt=30°C (a) and dt=room temperature (b).

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1