Manipulating composition gradient in cuprate superconducting thin films

logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 60, Issue 8: 087421(2017) https://doi.org/10.1007/s11433-017-9036-x

Manipulating composition gradient in cuprate superconducting thin films

Heshan Yu1,2, Jie Yuan1,3,*, Beiyi Zhu1, Kui Jin1,2,3,4,*
More info
  • ReceivedMar 24, 2016
  • AcceptedApr 7, 2017
  • PublishedMay 18, 2017

Abstract

There is no abstract available for this article.


Funded by

the Key Research Program of Frontier Sciences

Chinese Academy of Sciences(QYZDB-SSW-SLH008)

National Natural Science Foundation of China(11474338)

National Key Basic Research Program of China(2015CB921000)


Acknowledgment

This work was supported by the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDB-SSW-SLH008), the National Natural Science Foundation of China (Grant Nos. 11474338, and 11674374), and the National Key Basic Research Program of China (Grant Nos. 2015CB921000, and 2016YFA0300301).


References

[1] Potyrailo R., Rajan K., Stoewe K., Takeuchi I., Chisholm B., Lam H.. ACS Comb. Sci., 2011, 13: 579 CrossRef PubMed Google Scholar

[2] Takeuchi I., Famodu O. O., Read J. C., Aronova M. A., Chang K. S., Craciunescu C., Lofland S. E., Wuttig M., Wellstood F. C., Knauss L., Orozco A.. Nat. Mater., 2003, 2: 180 CrossRef PubMed ADS Google Scholar

[3] Hanak J. J.. J. Mater. Sci., 1970, 5: 964 CrossRef ADS Google Scholar

[4] Xiang X. D., Sun X., Brice?o G., Lou Y., Wang K. A., Chang H., Wallace-Freedman W. G., Chen S. W., Schultz P. G.. Science, 1995, 268: 1738 CrossRef PubMed ADS Google Scholar

[5] Webster D. C., Chisholm B. J., Stafslien S. J.. Biofouling, 2007, 23: 179 CrossRef PubMed Google Scholar

[6] Green M. L., Takeuchi I., Hattrick-Simpers J. R.. J. Appl. Phys., 2013, 113: 231101 CrossRef ADS Google Scholar

[7] Borodin O., Olguin M., Spear C. E., Leiter K. W., Knap J.. Nanotechnology, 2015, 26: 354003 CrossRef PubMed ADS Google Scholar

[8] van Dover R. B., Schneemeyer L. F., Fleming R. M.. Nature, 1998, 392: 162 CrossRef ADS Google Scholar

[9] Xiang X. D.. Annu. Rev. Mater. Sci., 1999, 29: 149 CrossRef ADS Google Scholar

[10] Lederman D., Vier D. C., Mendoza D., Santamaría J., Schultz S., Schuller I. K.. Appl. Phys. Lett., 1995, 66: 3677 CrossRef ADS Google Scholar

[11] Koinuma H., Aiyer H. N., Matsumoto Y.. Sci. Technol. Adv. Mater., 2000, 1: 1 CrossRef ADS Google Scholar

[12] Chang K. S., Aronova M. A., Lin C. L., Murakami M., Yu M. H., Hattrick-Simpers J., Famodu O. O., Lee S. Y., Ramesh R., Wuttig M., Takeuchi I., Gao C., Bendersky L. A.. Appl. Phys. Lett., 2004, 84: 3091 CrossRef ADS Google Scholar

[13] Gao C., Hu B., Li X., Liu C., Murakami M., Chang K. S., Long C. J., Wuttig M., Takeuchi I.. Appl. Phys. Lett., 2005, 87: 153505 CrossRef ADS Google Scholar

[14] Gao C., Hu B., Zhang P., Huang M., Liu W., Takeuchi I.. Appl. Phys. Lett., 2004, 84: 4647 CrossRef ADS Google Scholar

[15] Ahmet P., Yoo Y. Z., Hasegawa K., Koinuma H., Chikyow T.. Appl. Phys. A, 2004, 79: 837 CrossRef ADS Google Scholar

[16] Murakami M., Chang K. S., Aronova M. A., Lin C. L., Yu M. H., Simpers J. H., Wuttig M., Takeuchi I., Gao C., Hu B., Lofland S. E., Knauss L. A., Bendersky L. A.. Appl. Phys. Lett., 2005, 87: 112901 CrossRef ADS Google Scholar

[17] Barber Z. H., Blamire M. G.. Mater. Sci. Tech., 2008, 24: 757 CrossRef Google Scholar

[18] R. Cremer, and D. Neuschutz, in Development of functional materials by a composition spread approach: Proceedings of the Symposium on Combinatorial and Artificial Intelligence Methods in Materials Science held at the 2001 MRS Fall Meeting, Boston, USA, 26-29 November 2001, edited by I. Takeuchi, J. M. Newsam, L. T. Wille, H. Koinuma, and E. J. Amis (Materials Research Society, Warrendale, 2002), pp. 75-84. Google Scholar

[19] Fukumura T., Ohtani M., Kawasaki M., Okimoto Y., Kageyama T., Koida T., Hasegawa T., Tokura Y., Koinuma H.. Appl. Phys. Lett., 2000, 77: 3426 CrossRef ADS Google Scholar

[20] Huang H. C., Huang D. D., Chen J.. Jpn. J. Appl. Phys., 2000, 39: 485 CrossRef ADS Google Scholar

[21] Sawa A., Kawasaki M., Takagi H., Tokura Y.. Phys. Rev. B, 2002, 66: 014531 CrossRef ADS Google Scholar

[22] Jin K., Butch N. P., Kirshenbaum K., Paglione J., Greene R. L.. Nature, 2011, 476: 73 CrossRef PubMed Google Scholar

[23] Morrow T., Sakeek H. F., El Astal A., Graham W. G., Walmsley D. G.. J. Supercond, 1994, 7: 823 CrossRef ADS Google Scholar

[24] Christen H. M., Silliman S. D., Harshavardhan K. S.. Rev. Sci. Inst., 2001, 72: 2673 CrossRef ADS Google Scholar

[25] Marcu A., Grigoriu C., Yatsui K.. Appl. Surface Sci., 2005, 248: 466 CrossRef ADS Google Scholar

[26] M. Tachiki, E. Morita, K. Yamada, X. Fang, and T. Kobayashi, in Advanced pulsed laser deposition method (eclipse angel): Proceedings of the 3rd International Conference on Thin Film Physics and Applications, Shanghai, China, 15-17 April, 1997, edited by S. X. Zhou, Y. L. Wang, Y. X. Chen, and S. Z. Mao (SPIE, 1998), pp. 341-357. Google Scholar

[27] Wu J., Bo?ovi? I.. APL Mater., 2015, 3: 062401 CrossRef ADS Google Scholar

[28] Zhang X., Yu H., He G., Hu W., Yuan J., Zhu B., Jin K.. Phys. C-Supercond. Its Appl., 2016, 525-526: 18 CrossRef ADS arXiv Google Scholar

[29] Wu J., Bollinger A. T., Sun Y., Bo?ovi? I.. Proc. Natl. Acad. Sci. USA, 2016, 113: 4284 CrossRef PubMed ADS Google Scholar

[30] Keimer B., Kivelson S. A., Norman M. R., Uchida S., Zaanen J.. Nature, 2015, 518: 179 CrossRef PubMed ADS Google Scholar

[31] Yuan J., He G., Yang H., Shi Y. J., Zhu B. Y., Jin K.. Sci. China-Phys. Mech. Astron., 2015, 58: 107401 CrossRef ADS Google Scholar

  • Figure 1

    (Color online) (a) The schematic diagram of the continuous moving mask technique; (b) one typical procedure of binary combi-film growth by using moving mask technique.

  • Figure 2

    (Color online) (a) The micro-region X-ray diffraction results of combi-film La2xCexCuOδ, the component interval Δx is about 0.012; (b) the variation of c-axis lattice constant with increasing doping levels. In this figure, x refers to nominal doping level.

  • Figure 3

    (Color online) (a) The schematic diagram of patterns in electric transport measurements; (b) the variation of zero-resistance transition temperature Tc0 and onset of superconducting transition Tconset with increasing nominal Ce doping levels; (c) the “resistivity versus temperature” curves at different doping levels. In this figure, x refers to nominal doping level.

  • Figure 4

    (Color online) (a) The schematic diagram of the combi-film growth regardless of shadowing effect; (b) the schematic diagrams of the film morphology without shadowing effect; (c) the schematic diagrams of the film morphology with shadowing effect; (d) the schematic diagram of a tail; (e) the simulated curves of x vs. position with different λ, the inset is the zoom-in view; (f) the simulated curves of mean squared error Σδxi2/n vs. λ with different laser pulses N.

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1