Intrinsic superconducting transport properties of ultra-thin Fe$_{1+y}$Te$_{0.6}$Se$_{0.4}$ microbridges

logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 60, Issue 11: 117411(2017) https://doi.org/10.1007/s11433-017-9082-1

Intrinsic superconducting transport properties of ultra-thin Fe$_{1+y}$Te$_{0.6}$Se$_{0.4}$ microbridges

More info
  • ReceivedJun 6, 2017
  • AcceptedJul 13, 2017
  • PublishedAug 25, 2017
PACS numbers

Abstract

We investigated the superconducting properties of Fe$_{1+y}$Te$_{0.6}$Se$_{0.4}$ single-crystalline microbridges with a width of 4 $\mu$m and thicknesses ranging from 20.8 to 136.2 nm. The temperature-dependent in-plane resistance of the bridges exhibited a type of metal-insulator transition in the normal state. The critical current density (J$_\text{c}$) of the microbridge with a thickness of 136.2 nm was 82.3 kA/cm$^2$ at 3 K and reached 105 kA/cm$^2$ after extrapolation to $T$ = 0 K. The current versus voltage characteristics of the microbridges showed a Josephson-like behavior with an obvious hysteresis. These results demonstrate the potential application of ultra-thin Fe-based microbridges in superconducting electronic devices such as bolometric detectors.


Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11234006, 61501220, U1432135, 11674054, and 11611140101), Jiangsu Provincial Natural Science Fund (Grant No. SBK2015040804), and Opening Project of Wuhan National High Magnetic Field Center (Grant No. 2015KF19).


References

[1] Iida K., H?nisch J., Reich E., Kurth F., Hühne R., Schultz L., Holzapfel B., Ichinose A., Hanawa M., Tsukada I., Schulze M., Aswartham S., Wurmehl S., Büchner B.. Phys. Rev. B, 2013, 87: 104510 CrossRef ADS arXiv Google Scholar

[2] Kidszun M., Haindl S., Thersleff T., H?nisch J., Kauffmann A., Iida K., Freudenberger J., Schultz L., Holzapfel B.. Phys. Rev. Lett., 2011, 106: 137001 CrossRef PubMed ADS arXiv Google Scholar

[3] Moll P. J. W., Puzniak R., Balakirev F., Rogacki K., Karpinski J., Zhigadlo N. D., Batlogg B.. Nat. Mater., 2010, 9: 628 CrossRef PubMed ADS arXiv Google Scholar

[4] Zhi-An R., Wei L., Jie Y., Wei Y., Xiao-Li S., Zheng-Cai S., Guang-Can C., Xiao-Li D., Li-Ling S., Fang Z., Zhong-Xian Z.. Chin. Phys. Lett., 2008, 25: 2215 CrossRef ADS Google Scholar

[5] Hsu F. C., Luo J. Y., Yeh K. W., Chen T. K., Huang T. W., Wu P. M., Lee Y. C., Huang Y. L., Chu Y. Y., Yan D. C., Wu M. K.. Proc. Natl. Acad. Sci. USA, 2008, 105: 14262 CrossRef PubMed ADS Google Scholar

[6] Liu T. J., Hu J., Qian B., Fobes D., Mao Z. Q., Bao W., Reehuis M., Kimber S. A. J., Proke? K., Matas S., Argyriou D. N., Hiess A., Rotaru A., Pham H., Spinu L., Qiu Y., Thampy V., Savici A. T., Rodriguez J. A., Broholm C.. Nat. Mater., 2010, 9: 718 CrossRef PubMed ADS arXiv Google Scholar

[7] Bellingeri E., Pallecchi I., Buzio R., Gerbi A., Marrè D., Cimberle M. R., Tropeano M., Putti M., Palenzona A., Ferdeghini C.. Appl. Phys. Lett., 2010, 96: 102512 CrossRef ADS arXiv Google Scholar

[8] Si W., Lin Z. W., Jie Q., Yin W. G., Zhou J., Gu G., Johnson P. D., Li Q.. Appl. Phys. Lett., 2009, 95: 052504 CrossRef ADS Google Scholar

[9] J. F. Ge, Z. L. Liu, C. Liu, C. L. Gao, D. Qian, Q. K. Xue, Y. Liu, and J. F. Jia, Nat. Mater. 14, 285 (2015). Google Scholar

[10] Sales B. C., Sefat A. S., McGuire M. A., Jin R. Y., Mandrus D., Mozharivskyj Y.. Phys. Rev. B, 2009, 79: 094521 CrossRef ADS arXiv Google Scholar

[11] Li S., de la Cruz C., Huang Q., Chen Y., Lynn J. W., Hu J., Huang Y. L., Hsu F. C., Yeh K. W., Wu M. K., Dai P.. Phys. Rev. B, 2009, 79: 054503 CrossRef ADS arXiv Google Scholar

[12] Yeh K. W., Ke C. T., Huang T. W., Chen T. K., Huang Y. L., Wu P. M., Wu M. K.. Cryst. Growth Des., 2009, 9: 4847 CrossRef Google Scholar

[13] Huang C. L., Chou C. C., Tseng K. F., Huang Y. L., Hsu F. C., Yeh K. W., Wu M. K., Yang H. D.. J. Phys. Soc. Jpn., 2009, 78: 084710 CrossRef ADS Google Scholar

[14] Wang W., Li J., Yang J., Gu C., Chen X., Zhang Z., Zhu X., Lu W., Wang H. B., Wu P. H., Yang Z., Tian M., Zhang Y., Moshchalkov V. V.. Appl. Phys. Lett., 2014, 105: 232602 CrossRef ADS Google Scholar

[15] Zhuang J. C., Yeoh W. K., Cui X. Y., Kim J. H., Shi D. Q., Shi Z. X., Ringer S. P., Wang X. L., Dou S. X.. Appl. Phys. Lett., 2014, 104: 262601 CrossRef ADS arXiv Google Scholar

[16] Li Q., Si W., Dimitrov I. K.. Rep. Prog. Phys., 2011, 74: 124510 CrossRef ADS Google Scholar

[17] Y. Sun, T. Taen, Y. Tsuchiya, Z. X. Shi, and T. Tamegai, Supercond. Sci. Technol. 26, 015015 (2012). Google Scholar

[18] Taen T., Tsuchiya Y., Nakajima Y., Tamegai T.. Phys. Rev. B, 2009, 80: 092502 CrossRef ADS arXiv Google Scholar

[19] Zhuang J. C., Li Z., Xu X., Wang L., Yeoh W. K., Xing X. Z., Shi Z. X., Wang X. L., Du Y., Dou S. X.. Appl. Phys. Lett., 2015, 107: 222601 CrossRef ADS Google Scholar

[20] Sun Y., Taen T., Yamada T., Pyon S., Nishizaki T., Shi Z., Tamegai T.. Phys. Rev. B, 2014, 89: 144512 CrossRef ADS Google Scholar

[21] Wang H. B., Wu P. H., Yamashita T.. Appl. Phys. Lett., 2001, 78: 4010 CrossRef ADS Google Scholar

[22] Cao S., Shen S., Chen L., Yuan S., Kang B., Zhang J.. J. Appl. Phys., 2011, 110: 033914 CrossRef ADS Google Scholar

[23] Li L., Yang Z. R., Zhang Z. T., Pi L., Tan S., Zhang Y. H.. New J. Phys., 2010, 12: 063019 CrossRef ADS Google Scholar

[24] Zeng B., Mu G., Luo H. Q., Xiang T., Mazin I. I., Yang H., Shan L., Ren C., Dai P. C., Wen H. H.. Nat. Commun., 2010, 1: 112 CrossRef PubMed ADS arXiv Google Scholar

[25] Homes C. C., Akrap A., Wen J. S., Xu Z. J., Lin Z. W., Li Q., Gu G. D.. Phys. Rev. B, 2010, 81: 180508(R) CrossRef ADS arXiv Google Scholar

[26] Liu T. J., Ke X., Qian B., Hu J., Fobes D., Vehstedt E. K., Pham H., Yang J. H., Fang M. H., Spinu L., Schiffer P., Liu Y., Mao Z. Q.. Phys. Rev. B, 2009, 80: 174509 CrossRef ADS arXiv Google Scholar

[27] Li J., Yuan J., Yuan Y. H., Ge J. Y., Li M. Y., Feng H. L., Pereira P. J., Ishii A., Hatano T., Silhanek A. V., Chibotaru L. F., Vanacken J., Yamaura K., Wang H. B., Takayama-Muromachi E., Moshchalkov V. V.. Appl. Phys. Lett., 2013, 103: 062603 CrossRef ADS Google Scholar

[28] Migita M., Takikawa Y., Takeda M., Uehara M., Kuramoto T., Takano Y., Mizuguchi Y., Kimishima Y.. Physica C-Superconductivity its Appl., 2011, 471: 916 CrossRef ADS arXiv Google Scholar

[29] Prozorov R., Ni N., Tanatar M. A., Kogan V. G., Gordon R. T., Martin C., Blomberg E. C., Prommapan P., Yan J. Q., Bud'ko S. L., Canfield P. C.. Phys. Rev. B, 2008, 78: 224506 CrossRef ADS arXiv Google Scholar

  • Figure 1

    (Color online) (a) A scanning electron microscopic image of a typical Fe$_{1+y}$Te$_{0.6}$Se$_{0.4}$ microbridge with W= 4 $\mu$m and L=20 $\mu$m; (b) enlarged view of the step , and the thickness $h$ shown in (b) is about 130 nm.

  • Figure 2

    (Color online) (a) Temperature dependence of resistance ($R-T$) curve for Fe$_{1+y}$Te$_{0.6}$Se$_{0.4}$ the bulk crystal (a); microbridges of different thicknesses at low-temperature (b) and the entire temperature region (c).

  • Figure 3

    (Color online) (a) $R-T$ curves of the Fe$_{1+y}$Te$_{0.6}$Se$_{0.4}$ microbridges of Sample B at various currents ranging from 20 to 300 $\mu$A; (b) close-up of the $R-T$ curves at temperatures ranging from 14 to 20 K. The inset in (b) shows the resistance dependence of the current at 15 K.

  • Figure 4

    (Color online) Current-voltage characteristics of the microbridges of Sample B measured at different temperatures ranging from 14 to 3 K. The colored arrows indicate increases and decreases in current bias.

  • Figure 5

    (Color online) Temperature dependence of $J_\text{c}$ and $J_\text{r}$ as estimated from current versus voltage measurements. $J_\text{c}$ was fitted by the power law and Ginzburg-Landau theory.

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1