A new solver for granular avalanche simulation: Indoor experiment verification and field scale case study

logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 60, Issue 12: 124712(2017) https://doi.org/10.1007/s11433-017-9093-y

A new solver for granular avalanche simulation: Indoor experiment verification and field scale case study

More info
  • ReceivedJul 5, 2017
  • AcceptedAug 22, 2017
  • PublishedOct 27, 2017
PACS numbers

Abstract

A new solver based on the high-resolution scheme with novel treatments of source terms and interface capture for the Savage-Hutter model is developed to simulate granular avalanche flows. The capability to simulate flow spread and deposit processes is verified through indoor experiments of a two-dimensional granular avalanche. Parameter studies show that reduction in bed friction enhances runout efficiency, and that lower earth pressure restraints enlarge the deposit spread. The April 9, 2000, Yigong avalanche in Tibet, China, is simulated as a case study by this new solver. The predicted results, including evolution process, deposit spread, and hazard impacts, generally agree with site observations. It is concluded that the new solver for the Savage-Hutter equation provides a comprehensive software platform for granular avalanche simulation at both experimental and field scales. In particular, the solver can be a valuable tool for providing necessary information for hazard forecasts, disaster mitigation, and countermeasure decisions in mountainous areas.


Funded by

and the LMFS Foundation for Young Scientists.

National Natural Science Foundation of China(11602278)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11602278, and 11432015), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB22040203), and the LMFS Foundation for Young Scientists, and the authors are grateful for the suggestions of anonymous reviewers.


References

[1] R. Q. Huang, Geohazard Assessment of the Wenchuan Earthquake (in Chinese) (Science Press, Beijing, 2009), pp. 1-5. Google Scholar

[2] Y. P. Ying, Hydrogeol. Eng. Geol. 27, 8 (2000). Google Scholar

[3] M. J. Hu, Q. G. Cheng, and F. W. Wang, Chin. J. Rock Mech. Eng. 28, 138 (2009). Google Scholar

[4] B. Andreotti, Y. Forterre, and O. Pouliquen, Granular Media: Between Fluid and Solid (Cambridge University Press, Cambridge, 2013), pp. 3-7. Google Scholar

[5] Q. C. Sun, M. Y. Hou, and F. Jin, Physics and Mechanics of Granular Matter (Science Press, Beijing, 2011), pp. 242-265. Google Scholar

[6] Ancey C.. J. Non-Newton. Fluid Mech., 2007, 142: 4 CrossRef Google Scholar

[7] An Y., Wu Q., Shi C., Liu Q.. Géotechnique, 2016, 66: 670 CrossRef Google Scholar

[8] Pudasaini S. P., Wang Y., Hutter K.. Nat. Hazards Earth Syst. Sci., 2005, 5: 799 CrossRef Google Scholar

[9] Iverson R. M., Denlinger R. P.. J. Geophys. Res., 2001, 106: 537 CrossRef ADS Google Scholar

[10] Pastor M., Blanc T., Haddad B., Drempetic V., Morles M. S., Dutto P., Stickle M. M., Mira P., Merodo J. A. F.. Arch. Computat. Methods Eng., 2015, 22: 67 CrossRef Google Scholar

[11] J. P. King, in Geotechnical Engineering: Meeting Society’s Needs: Proceedings of 14th South East Asian Geotechnical Conference, edited by K. K. S. Ho, and K. S. Li (A. A. Balkema Publishers, Rotterdam, 2001), pp. 783-788. Google Scholar

[12] Savage S. B., Hutter K.. J. Fluid Mech., 1989, 199: 177 CrossRef ADS Google Scholar

[13] Pudasaini S. P., Hutter K.. J. Fluid Mech., 2003, 495: 193 CrossRef ADS Google Scholar

[14] Iverson R. M., George D. L.. Proc. R. Soc. A-Math. Phys. Eng. Sci., 2014, 470: 20130819 CrossRef ADS Google Scholar

[15] Pitman E. B., Le L.. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 2005, 363: 1573 CrossRef PubMed ADS Google Scholar

[16] Pudasaini S. P.. J. Geophys. Res., 2012, 117: F03010 CrossRef ADS Google Scholar

[17] Gao F. P., Li J. H., Qi W. G., Hu C.. Sci. China-Phys. Mech. Astron., 2015, 58: 124701 CrossRef ADS Google Scholar

[18] Midi G.. Eur. Phys. J. E, 2004, 14: 341 CrossRef PubMed ADS Google Scholar

[19] Wang X. L., Li J. C.. Sci. China-Phys. Mech. Astron., 2014, 57: 2297 CrossRef ADS Google Scholar

[20] Wang X., Li J.. Powder Tech., 2015, 275: 121 CrossRef Google Scholar

[21] Gray J. M. N. T., Edwards A. N.. J. Fluid Mech., 2014, 755: 503 CrossRef ADS Google Scholar

[22] Gray J. M. N. T., Chugunov V. A.. J. Fluid Mech., 2006, 569: 365 CrossRef ADS Google Scholar

[23] Edwards A. N., Gray J. M. N. T.. J. Fluid Mech., 2015, 762: 35 CrossRef ADS Google Scholar

[24] McDougall S., Hungr O.. Can. Geotech. J., 2005, 42: 1437 CrossRef Google Scholar

[25] Iverson R. M., Ouyang C.. Rev. Geophys., 2015, 53: 27 CrossRef ADS Google Scholar

[26] Savage S. B., Hutter K.. Acta Mech., 1991, 86: 201 CrossRef Google Scholar

[27] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (Springer, Berlin Heidelberg, 2013), pp. 493-503. Google Scholar

[28] Pitman E. B., Nichita C. C., Patra A., Bauer A., Sheridan M., Bursik M.. Phys. Fluids, 2003, 15: 3638 CrossRef ADS Google Scholar

[29] Davis S. F.. SIAM J. Sci. Stat. Comput., 1988, 9: 445 CrossRef Google Scholar

[30] Zhai J., Yuan L., Liu W., Zhang X.. Int. J. Numer. Meth. Fluids, 2015, 77: 381 CrossRef ADS Google Scholar

[31] Denlinger R. P., Iverson R. M.. J. Geophys. Res., 2001, 106: 553 CrossRef ADS Google Scholar

[32] George D. L., Iverson R. M.. Proc. R. Soc. A-Math. Phys. Eng. Sci., 2014, 470: 20130820 CrossRef ADS Google Scholar

[33] Pelanti M., Bouchut F., Mangeney A.. ESAIM-M2AN, 2008, 42: 851 CrossRef Google Scholar

[34] Pelanti M., Bouchut F., Mangeney A.. J. Comp. Phys., 2011, 230: 515 CrossRef ADS Google Scholar

[35] Greco M., Iervolino M., Leopardi A., Vacca A.. Int. J. Sediment Res., 2012, 27: 409 CrossRef Google Scholar

[36] He S., Liu W., Ouyang C., Li X.. Nat. Hazards Earth Syst. Sci. Discuss., 2014, 2: 2151 CrossRef ADS Google Scholar

[37] B. Cockburn, G. E. Karniadakis, and C. W. Shu, Discontinuous Galerkin Methods (Springer, Berlin Heidelberg, 2000), pp. 3-50. Google Scholar

[38] Andersen S., Andersen L.. Comput. Geosci., 2010, 14: 137 CrossRef Google Scholar

[39] Jop P., Forterre Y., Pouliquen O.. Nature, 2006, 441: 727 CrossRef PubMed ADS Google Scholar

[40] da Cruz F., Emam S., Prochnow M., Roux J. N., Chevoir F.. Phys. Rev. E, 2005, 72: 021309 CrossRef PubMed ADS Google Scholar

[41] Forterre Y., Pouliquen O.. Annu. Rev. Fluid Mech., 2008, 40: 1 CrossRef ADS Google Scholar

[42] Lagrée P. Y., Staron L., Popinet S.. J. Fluid Mech., 2011, 686: 378 CrossRef ADS Google Scholar

[43] Bermudez A., Vazquez M. E.. Comp. Fluids, 1994, 23: 1049 CrossRef Google Scholar

[44] Bradford S. F., Sanders B. F.. J. Hydraul. Eng., 2002, 128: 289 CrossRef Google Scholar

[45] Sleigh P. A., Gaskell P. H., Berzins M., Wright N. G.. Comp. Fluids, 1998, 27: 479 CrossRef Google Scholar

[46] Melosh H. J.. J. Geophys. Res., 1979, 84: 7513 CrossRef ADS Google Scholar

[47] Shreve R. L.. Science, 1966, 154: 1639 CrossRef PubMed ADS Google Scholar

[48] Iverson R. M., LaHusen R. G.. Science, 1989, 246: 796 CrossRef PubMed ADS Google Scholar

[49] X. L. Wang, and J. C. Li, J. Eng. Geol. 24, 717 (2016). Google Scholar

[50] Koch T., Greve R., Hutter K.. Proc. R. Soc. A-Math. Phys. Eng. Sci., 1994, 445: 415 CrossRef ADS Google Scholar

[51] Zhou J., Cui P., Hao M.. Landslides, 2016, 13: 39 CrossRef Google Scholar

[52] Lucas A., Mangeney A., Ampuero J. P.. Nat. Commun., 2014, 5: 3417 CrossRef PubMed ADS Google Scholar

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1