Excitonic processes at organic heterojunctions

logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 61, Issue 2: 027301(2018) https://doi.org/10.1007/s11433-017-9110-x

Excitonic processes at organic heterojunctions

More info
  • ReceivedAug 15, 2017
  • AcceptedSep 25, 2017
  • PublishedDec 13, 2017
PACS numbers

Abstract

Understanding excitonic processes at organic heterojunctions is crucial for development of organic semiconductor devices. This article reviews recent research on excitonic physics that involve intermolecular charge transfer (CT) excitons, and progress on understanding relationships between various interface energy levels and key parameters governing various competing interface excitonic processes. These interface excitonic processes include radiative exciplex emission, nonradiative recombination, Auger electron emission, and CT exciton dissociation. This article also reviews various device applications involving interface CT excitons, such as organic light-emitting diodes (OLEDs), organic photovoltaic cells, organic rectifying diodes, and ultralow-voltage Auger OLEDs.


Funded by

National Natural Science Foundation of China(U1402273)

the Natural Science and Engineering Research Council of Canada.


Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant No. U1402273), and the Natural Science and Engineering Research Council of Canada.


References

[1] McCarthy M. A., Liu B., Donoghue E. P., Kravchenko I., Kim D. Y., So F., Rinzler A. G.. Science, 2011, 332: 570 CrossRef PubMed ADS Google Scholar

[2] Reineke S., Lindner F., Schwartz G., Seidler N., Walzer K., Lüssem B., Leo K.. Nature, 2009, 459: 234 CrossRef PubMed ADS Google Scholar

[3] Kippelen B., Brédas J. L.. Energ. Environ. Sci., 2009, 2: 251 CrossRef Google Scholar

[4] Zhu X. Y., Yang Q., Muntwiler M.. Acc. Chem. Res., 2009, 42: 1779 CrossRef PubMed Google Scholar

[5] Wang J. F., Kawabe Y., Shaheen S. E., Morrell M. M., Jabbour G. E., Lee P. A., Anderson J., Armstrong N. R., Kippelen B., Mash E. A., Peyghambarian N.. Adv. Mater., 1998, 10: 230 CrossRef Google Scholar

[6] Cocchi M., Virgili D., Giro G., Fattori V., Di Marco P., Kalinowski J., Shirota Y.. Appl. Phys. Lett., 2002, 80: 2401 CrossRef ADS Google Scholar

[7] Goushi K., Yoshida K., Sato K., Adachi C.. Nat. Photon., 2012, 6: 253 CrossRef ADS Google Scholar

[8] Goushi K., Adachi C.. Appl. Phys. Lett., 2012, 101: 023306 CrossRef ADS Google Scholar

[9] Liu X. K., Chen Z., Zheng C. J., Liu C. L., Lee C. S., Li F., Ou X. M., Zhang X. H.. Adv. Mater., 2015, 27: 2378 CrossRef PubMed Google Scholar

[10] Chen D., Xie G., Cai X., Liu M., Cao Y., Su S. J.. Adv. Mater., 2016, 28: 239 CrossRef PubMed Google Scholar

[11] Kirchartz T., Taretto K., Rau U.. J. Phys. Chem. C, 2009, 113: 17958 CrossRef Google Scholar

[12] Deibel C., Strobel T., Dyakonov V.. Adv. Mater., 2010, 22: 4097 CrossRef PubMed Google Scholar

[13] He S. J., White R., Wang D. K., Zhang J., Jiang N., Lu Z. H.. Org. Electron., 2014, 15: 3370 CrossRef Google Scholar

[14] Pandey A. K., Nunzi J. M.. Adv. Mater., 2007, 19: 3613 CrossRef Google Scholar

[15] He S. J., Wang D. K., Jiang N., Zhang J., Lu Z. H.. Phys. Rev. Appl., 2015, 3: 054011 CrossRef ADS Google Scholar

[16] He S. J., Lu Z. H.. J. Photon. Energ., 2016, 6: 036001 CrossRef ADS Google Scholar

[17] Ingram G. L., Nguyen C., Lu Z. H.. Phys. Rev. Appl., 2016, 5: 064002 CrossRef ADS Google Scholar

[18] Ingram G. L., Lu Z. H.. Org. Electron., 2017, 50: 48 CrossRef Google Scholar

[19] Niwa A., Kobayashi T., Nagase T., Goushi K., Adachi C., Naito H.. Appl. Phys. Lett., 2014, 104: 213303 CrossRef ADS Google Scholar

[20] He S. J., Wang D. K., Jiang N., Tse J. S., Lu Z. H.. Adv. Mater., 2016, 28: 649 CrossRef PubMed Google Scholar

[21] A. Weller, Singlet-and Triplet-State Exciplexes (Academic Press Inc., London, 1975), pp. 23-38. Google Scholar

[22] Veldman D., Meskers S. C. J., Janssen R. A. J.. Adv. Funct. Mater., 2009, 19: 1939 CrossRef Google Scholar

[23] Burke T. M., Sweetnam S., Vandewal K., McGehee M. D.. Adv. Energ. Mater., 2015, 5: 1500123 CrossRef Google Scholar

[24] N. F. Mott, and E. A. Davis, Electronic Processes in Non-Crystalline Materials (Oxford University Press, Oxford, 2012). Google Scholar

[25] He S. J., Wang D. K., Jiang N., Lu Z. H.. J. Phys. Chem. C, 2016, 120: 21325 CrossRef Google Scholar

[26] S. M. Sze, and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons Inc, Hoboken, 2006). Google Scholar

[27] M. Pope, and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers (Oxford University Press, New York, 1999). Google Scholar

[28] Wang L. W., Califano M., Zunger A., Franceschetti A.. Phys. Rev. Lett., 2003, 91: 056404 CrossRef PubMed ADS Google Scholar

[29] Matsunaga R., Matsuda K., Kanemitsu Y.. Phys. Rev. Lett., 2011, 106: 037404 CrossRef PubMed ADS arXiv Google Scholar

[30] Deibel C., Strobel T., Dyakonov V.. Phys. Rev. Lett., 2009, 103: 036402 CrossRef PubMed ADS Google Scholar

[31] Blakesley J. C., Neher D.. Phys. Rev. B, 2011, 84: 075210 CrossRef ADS Google Scholar

[32] Li P., Hong W., Li Y., Ingram G., Lu Z. H.. Adv. Electron. Mater., 2017, 3: 1700115 CrossRef ADS Google Scholar

[33] Park Y. S., Jeong W. I., Kim J. J.. J. Appl. Phys., 2011, 110: 124519 CrossRef ADS Google Scholar

[34] Zhou D. Y., Zamani Siboni H., Wang Q., Liao L. S., Aziz H.. J. Phys. Chem. C, 2014, 118: 24006 CrossRef Google Scholar

[35] Shin H., Lee S., Kim K. H., Moon C. K., Yoo S. J., Lee J. H., Kim J. J.. Adv. Mater., 2014, 26: 4730 CrossRef PubMed Google Scholar

[36] Kim K. H., Moon C. K., Lee J. H., Kim S. Y., Kim J. J.. Adv. Mater., 2014, 26: 3844 CrossRef PubMed Google Scholar

[37] Kim K. H., Lee S., Moon C. K., Kim S. Y., Park Y. S., Lee J. H., Woo Lee J., Huh J., You Y., Kim J. J.. Nat. Commun., 2014, 5: 4769 CrossRef PubMed ADS Google Scholar

[38] Liu X. K., Chen Z., Zheng C. J., Chen M., Liu W., Zhang X. H., Lee C. S.. Adv. Mater., 2015, 27: 2025 CrossRef PubMed Google Scholar

[39] Kim K. H., Yoo S. J., Kim J. J.. Chem. Mater., 2016, 28: 1936 CrossRef Google Scholar

[40] Nakanotani H., Furukawa T., Morimoto K., Adachi C.. Sci. Adv., 2016, 2: e1501470 CrossRef PubMed ADS Google Scholar

[41] Campbell I. H., Crone B. K.. Appl. Phys. Lett., 2012, 101: 023301 CrossRef ADS Google Scholar

[42] Sampat S., Mohite A. D., Crone B., Tretiak S., Malko A. V., Taylor A. J., Yarotski D. A.. J. Phys. Chem. C, 2015, 119: 1286 CrossRef Google Scholar

[43] Kumar A., Pace G., Bakulin A. A., Fang J., Ho P. K. H., Huck W. T. S., Friend R. H., Greenham N. C.. Energ. Environ. Sci., 2013, 6: 1589 CrossRef Google Scholar

[44] Nie W., Gupta G., Crone B. K., Liu F., Smith D. L., Ruden P. P., Kuo C. Y., Tsai H., Wang H. L., Li H., Tretiak S., Mohite A. D.. Adv. Sci., 2015, 2: 1500024 CrossRef PubMed Google Scholar

[45] Kleemann H., Schumann S., J?rges U., Ellinger F., Leo K., Lüssem B.. Org. Electron., 2012, 13: 1114 CrossRef Google Scholar

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1