Steady bipartite coherence induced by non-equilibrium environment

logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 61, Issue 1: 010311(2018) https://doi.org/10.1007/s11433-017-9115-2

Steady bipartite coherence induced by non-equilibrium environment

More info
  • ReceivedAug 22, 2017
  • AcceptedOct 10, 2017
  • PublishedOct 30, 2017
PACS numbers

Abstract

We study the steady state of two coupled two-level atoms interacting with a non-equilibrium environment that consists of two heat baths at different temperatures. Specifically, we analyze four cases with respect to the configuration about the interactions between atoms and heat baths. Using secular approximation, the conventional master equation usually neglects steady-state coherence, even when the system is coupled with a non-equilibrium environment. When employing the master equation with no secular approximation, we find that the system coherence in our model, denoted by the off-diagonal terms in the reduced density matrix spanned by the eigenvectors of the system Hamiltonian, would survive after a long-time decoherence evolution. The absolute value of residual coherence in the system relies on different configurations of interaction channels between the system and the heat baths. We find that a large steady quantum coherence term can be achieved when the two atoms are resonant. The absolute value of quantum coherence decreases in the presence of additional atom-bath interaction channels. Our work sheds new light on the mechanism of steady-state coherence in microscopic quantum systems in non-equilibrium environments.


References

[1] Scully M. O.. Science, 2003, 299: 862-864 CrossRef PubMed ADS Google Scholar

[2] Linke H.. Science, 2003, 299: 841-842 CrossRef PubMed Google Scholar

[3] Scully M. O., Chapin K. R., Dorfman K. E., Kim M. B., Svidzinsky A.. Proc. Natl. Acad. Sci., 2011, 108: 15097-15100 CrossRef PubMed ADS Google Scholar

[4] Schumacher B., Westmoreland M. D.. Phys. Rev. Lett., 1998, 80: 5695-5697 CrossRef ADS Google Scholar

[5] M. A. Nielsen, and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000), p. 26. Google Scholar

[6] Scully M. O.. Phys. Rev. Lett., 2010, 104: 207701 CrossRef PubMed ADS Google Scholar

[7] H. P. Breuer, and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002), p. 219. Google Scholar

[8] Schlosshauer M.. Rev. Mod. Phys., 2005, 76: 1267-1305 CrossRef ADS Google Scholar

[9] Wang H. Y., Zheng W. Q., Yu N. K., Li K. R., Lu D. W., Xin T., Li C., Ji Z. F., Kribs D., Zeng B., Peng X. H., Du J. F.. Sci. China-Phys. Mech. Astron., 2016, 59: 100313 CrossRef ADS arXiv Google Scholar

[10] Li T., Yin Z. Q.. Sci. Bull., 2016, 61: 163-171 CrossRef Google Scholar

[11] Viola L., Lloyd S.. Phys. Rev. A, 1998, 58: 2733-2744 CrossRef ADS Google Scholar

[12] Viola L., Knill E., Lloyd S.. Phys. Rev. Lett., 1999, 82: 2417-2421 CrossRef ADS Google Scholar

[13] Viola L., Lloyd S., Knill E.. Phys. Rev. Lett., 1999, 83: 4888-4891 CrossRef ADS Google Scholar

[14] Lidar D. A., Chuang I. L., Whaley K. B.. Phys. Rev. Lett., 1998, 81: 2594-2597 CrossRef ADS Google Scholar

[15] Kwiat P. G.. Science, 2000, 290: 498-501 CrossRef ADS Google Scholar

[16] Altafini C.. Phys. Rev. A, 2004, 70: 062321 CrossRef ADS Google Scholar

[17] Amini A., Cheng C.. Sci Rep, 2013, 3: 2476 CrossRef PubMed ADS Google Scholar

[18] Jing J., Wu L. A.. Sci. Bull., 2015, 60: 328-335 CrossRef Google Scholar

[19] Dong W., Wu R., Yuan X., Li C., Tarn T. J.. Sci. Bull., 2015, 60: 1493-1508 CrossRef Google Scholar

[20] Zhang Z. D., Wang J.. J. Chem. Phys., 2014, 140: 245101 CrossRef PubMed ADS arXiv Google Scholar

[21] Zhang Z., Fu H., Wang J.. Phys. Rev. B, 2017, 95: 144306 CrossRef ADS arXiv Google Scholar

[22] Takei S., Kim Y. B.. Phys. Rev. B, 2008, 78: 165401 CrossRef ADS arXiv Google Scholar

[23] Oka T., Aoki H.. Phys. Rev. B, 2010, 82: 064516 CrossRef ADS arXiv Google Scholar

[24] Ye B. L., Li B., Zhao L. J., Zhang H. J., Fei S. M.. Sci. China-Phys. Mech. Astron., 2017, 60: 030311 CrossRef ADS arXiv Google Scholar

[25] Su S. H., Sun C. P., Li S. W., Chen J. C.. Phys. Rev. E, 2016, 93: 052103 CrossRef PubMed ADS arXiv Google Scholar

[26] Sarovar M., Ishizaki A., Fleming G. R., Whaley K. B.. Nat. Phys., 2010, 6: 462-467 CrossRef ADS arXiv Google Scholar

[27] Lambert N., Chen Y. N., Cheng Y. C., Li C. M., Chen G. Y., Nori F.. Nat. Phys., 2012, 9: 10-18 CrossRef ADS Google Scholar

[28] Fassioli F., Dinshaw R., Arpin P. C., Scholes G. D.. J. R. Soc. Interface, 2014, 11: 20130901-20130901 CrossRef PubMed Google Scholar

[29] Croce R., van Amerongen H.. Nat Chem Biol, 2014, 10: 492-501 CrossRef PubMed Google Scholar

[30] Hiscock H. G., Worster S., Kattnig D. R., Steers C., Jin Y., Manolopoulos D. E., Mouritsen H., Hore P. J.. Proc. Natl. Acad. Sci. USA, 2016, 113: 4634-4639 CrossRef PubMed ADS Google Scholar

[31] Tegmark M.. Phys. Rev. E, 2000, 61: 4194-4206 CrossRef ADS Google Scholar

[32] Fisher M. P. A.. Ann. Phys., 2015, 362: 593-602 CrossRef ADS arXiv Google Scholar

[33] Lindblad G.. Commun.Math. Phys., 1976, 48: 119-130 CrossRef ADS Google Scholar

[34] L. Allen, and J. H. Eberly, Optical Resonance and Two-Level atoms (Dover, New York, 1987), p. 56. Google Scholar

[35] Benatti F., Floreanini R., Marzolino U.. Phys. Rev. A, 2010, 81: 012105 CrossRef ADS arXiv Google Scholar

[36] Santos J. P., Semi?o F. L.. Phys. Rev. A, 2014, 89: 022128 CrossRef ADS arXiv Google Scholar

[37] De\c{c}ordi G. L., Vidiella-Barranco A.. Optics Commun., 2017, 387: 366-376 CrossRef ADS arXiv Google Scholar

[38] Liao J. Q., Huang J. F., Kuang L. M.. Phys. Rev. A, 2011, 83: 052110 CrossRef ADS arXiv Google Scholar

[39] Li S. W., Cai C. Y., Sun C. P.. Ann. Phys., 2015, 360: 19-32 CrossRef Google Scholar

  • Figure 1

    (Color online) The diagram sketch of our model with two coupled atoms interacting with a non-equilibrium environment consisted of a hotter bath-$b$ and a colder bath-$a$. The coupling coefficients $c_{i\alpha}$'s, $i=1,2$, $\alpha=a,b$, determine the configuration of interaction channels.

  • Figure 2

    (Color online) The absolute value of $\rho_{32}$ in configuration of Case A vs. the temperature difference $\Delta_{T}/\gamma$ between the two baths (a) and the temperature of the colder bath-$a$ $T_{a}/\gamma$ (b), under various detuning between the two atoms $\Delta/\gamma$. We fix $T_{a}/\gamma=10$ in (a) and $\Delta_{T}/\gamma=50$ in (b). The average frequency of atoms and the coupling strength between atoms are set as $\Omega/\gamma=30$ and $\xi/\gamma=2$, respectively.

  • Figure 3

    (Color online) The phase diagram of $|\rho_{32}|$ for Case A in space of the temperature of bath-$a$ $T_{a}/\gamma$ and the temperature difference $\Delta_{T}/\gamma$. Here we consider the resonance case for the two atoms that $\Delta=0$. The average frequency of atoms and the coupling strength between atoms are set as $\Omega/\gamma=30$ and $\xi/\gamma=2$, respectively.

  • Figure 4

    (Color online) The phase diagram of $|\rho_{32}|$ for Case B in space of the temperature of bath-$a$ $T_{a}/\gamma$ and the temperature difference $\Delta_{T}/\gamma$. We consider the resonant condition with $\Delta=0$ and other parameters are set as the same as Figure 3.

  • Figure 5

    (Color online) The phase diagram of $|\rho_{32}|$ for Case C in space of the temperature of bath-$a$ $T_{a}/\gamma$ and the temperature difference $\Delta_{T}/\gamma$. We consider the resonant condition with $\Delta=0$ and other parameters are set as the same as Figure 3.

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1