Improving the efficiency of quantum hash function by dense coding of coin operators in discrete-time quantum walk

logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 61, Issue 3: 030312(2018) https://doi.org/10.1007/s11433-017-9132-y

Improving the efficiency of quantum hash function by dense coding of coin operators in discrete-time quantum walk

More info
  • ReceivedOct 3, 2017
  • AcceptedNov 8, 2017
  • PublishedJan 18, 2018
PACS numbers

Abstract

Li et al. first proposed a quantum hash function (QHF) in a quantum-walk architecture. In their scheme, two two-particle interactions, i.e., I interaction and π-phase interaction are introduced and the choice of I or π-phase interactions at each iteration depends on a message bit. In this paper, we propose an efficient QHF by dense coding of coin operators in discrete-time quantum walk. Compared with existing QHFs, our protocol has the following advantages: the efficiency of the QHF can be doubled and even more; only one particle is enough and two-particle interactions are unnecessary so that quantum resources are saved. It is a clue to apply the dense coding technique to quantum cryptographic protocols, especially to the applications with restricted quantum resources.


Funded by

and Beijing Natural Science Foundation(Grant)

the National Natural Science Foundation of China(Grant)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61572053, 61671087, U1636106, and 61602019), and Beijing Natural Science Foundation (Grant No. 4162005).


References

[1] D. Knuth, The Art of Computer Programming, Sorting and Searching (Addison-Wesley, New Jersey, 1998). Google Scholar

[2] X. Wang, D. Feng, X. Lai, and H. Yu, in Rump Session of Crypto’04 E-print, Santa Barbara, 2004. Google Scholar

[3] X. Wang, X. Lai, D. Feng, X. Yu, and X. Yu, in Proceedings of Eurocrypt’05, Aarhus, 2005. pp. 1-18. Google Scholar

[4] X. Wang, and H. Yu, in Proceedings of Eurocrypt’05, Aarhus, 2005. p. 19-35. Google Scholar

[5] Shen J., Liu D., Shen J., Liu Q., Sun X.. Pervasive Mobile Computing, 2017, 41: 219 CrossRef Google Scholar

[6] Fu Z., Ren K., Shu J., Sun X., Huang F.. IEEE Trans. Parallel. Distrib. Syst., 2016, 27: 2546 CrossRef Google Scholar

[7] Fu Z., Wu X., Guan C., Sun X., Ren K.. IEEE Trans. Inform. Foren. Secur., 2016, 11: 2706 CrossRef Google Scholar

[8] Fu Z., Huang F., Ren K., Weng J., Wang C.. IEEE Trans. Inform. Foren. Secur., 2017, 12: 1874 CrossRef Google Scholar

[9] P. W. Shor, in Proceedings of 35th Annual Symposium on the Foundations of Computer Science, Santa Fe, 1994, pp. 124-134. Google Scholar

[10] L. K. Grover, in Proceedings of 28th Annual ACM Symposium on Theory of Computing, New York, 1996, pp. 212-218. Google Scholar

[11] C. H. Bennett, and G. Brassard, in Proceedings of IEEE International Conference on Computers, Systems and Signal, Bangalore, 1984, pp.175-179. Google Scholar

[12] Gisin N., Ribordy G., Tittel W., Zbinden H.. Rev. Mod. Phys., 2002, 74: 145 CrossRef ADS Google Scholar

[13] Buhrman H., Cleve R., Watrous J., de Wolf R.. Phys. Rev. Lett., 2001, 87: 167902 CrossRef PubMed ADS Google Scholar

[14] D. Gavinsky, and T. Ito, Quantum Fingerprints that Keep Secrets. Technical Report (Cornell University Library, 2010). Google Scholar

[15] Ablayev F. M., Vasiliev A. V.. Laser Phys. Lett., 2014, 11: 025202 CrossRef ADS Google Scholar

[16] Ablayev F., Ablayev M., Vasiliev A.. J. Phys.-Conf. Ser., 2016, 681: 012019 CrossRef ADS Google Scholar

[17] M. Ziatdinov. arXiv Google Scholar

[18] Ziatdinov M.. Lobachev. J. Math., 2016, 37: 705 CrossRef Google Scholar

[19] Vasiliev A.. Lobachev. J. Math., 2016, 37: 753 CrossRef Google Scholar

[20] D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani, in Proceedings of the 33rd ACM Symposium on Theory of Computing, Crete, 2001, pp. 50-59. Google Scholar

[21] Ambainis A.. SIAM J. Comput., 2007, 37: 210 CrossRef Google Scholar

[22] Magniez F., Santha M., Szegedy M.. SIAM J. Comput., 2007, 37: 413 CrossRef Google Scholar

[23] Tamascelli D., Zanetti L.. J. Phys. A-Math. Theor., 2014, 47: 325302 CrossRef ADS arXiv Google Scholar

[24] Li D., Zhang J., Guo F. Z., Huang W., Wen Q. Y., Chen H.. Quantum Inf. Process., 2013, 12: 1501 CrossRef ADS Google Scholar

[25] Yang Y. G., Xu P., Yang R., Zhou Y. H., Shi W. M.. Sci. Rep., 2016, 6: 19788 CrossRef PubMed ADS Google Scholar

[26] D. Li, Y.-G. Yang, J.-L. Bi, J.-B. Yuan, and J. Xu. arXiv Google Scholar

[27] Xue P., Sanders B. C.. Phys. Rev. A, 2012, 85: 022307 CrossRef ADS arXiv Google Scholar

[28] ?tefaňák M., Barnett S. M., Kollár B., Kiss T., Jex I.. New J. Phys., 2011, 13: 033029 CrossRef ADS arXiv Google Scholar

[29] Lo H. K., Chau H. F.. Science, 1999, 283: 2050 CrossRef ADS Google Scholar

[30] Yang Y. G., Liu Z. C., Li J., Chen X. B., Zuo H. J., Zhou Y. H., Shi W. M.. Quantum Inf. Process., 2017, 16: 12 CrossRef ADS Google Scholar

[31] Yang Y. G., Lei H., Liu Z. C., Zhou Y. H., Shi W. M.. Quantum Inf. Process., 2016, 15: 2487 CrossRef ADS Google Scholar

[32] Wang T. Y., Wei Z. L.. Quantum Inf. Process., 2012, 11: 455 CrossRef Google Scholar

[33] Wang T. Y., Cai X. Q., Ren Y. L., Zhang R. L.. Sci. Rep., 2015, 5: 9231 CrossRef PubMed ADS Google Scholar

[34] Yang Y. G., Wen Q. Y.. J. Phys. A-Math. Theor., 2009, 42: 055305 CrossRef ADS Google Scholar

[35] Yang Y. G., Cao W. F., Wen Q. Y.. Phys. Scr., 2009, 80: 065002 CrossRef ADS Google Scholar

[36] Chen X. B., Xu G., Niu X. X., Wen Q. Y., Yang Y. X.. Opt. Commun., 2010, 283: 1561 CrossRef ADS Google Scholar

[37] He Y. F., Ma W. P.. Quantum Inf. Process., 2016, 15: 5023 CrossRef ADS Google Scholar

[38] Liu B., Gao F., Huang W., Wen Q.. Quantum Inf. Process., 2013, 12: 1797 CrossRef ADS Google Scholar

[39] Gao F., Liu B., Huang W., Wen Q. Y.. IEEE J. Sel. Top. Quantum Electron., 2015, 21: 98 CrossRef Google Scholar

[40] Wei C. Y., Wang T. Y., Gao F.. Phys. Rev. A, 2016, 93: 042318 CrossRef ADS Google Scholar

[41] Yang Y. G., Liu Z. C., Chen X. B., Zhou Y. H., Shi W. M.. Sci. China-Phys. Mech. Astron., 2017, 60: 120311 CrossRef Google Scholar

[42] Yang Y. G., Liu Z. C., Li J., Chen X. B., Zuo H. J., Zhou Y. H., Shi W. M.. Phys. Lett. A, 2016, 380: 4033 CrossRef ADS Google Scholar

  • Figure 1

    Circuit representation of the unitary operation at the ith iteration in the first QHF. The top n lines are the quantum register for storing the information about the position. The two lower lines are the two-bit message m2i?1m2i, and the other line is the quantum register for storing the information about the coin.

  • Figure 2

    (Color online) Hash values of C1, C2, C3, C4, C5.

  • Figure 3

    Circuit representation of the unitary operation at the ith iteration in the second QHF. The top n lines are the quantum register for storing the information about the position. The three lower lines are the three-bit message, and the other line is the quantum register for storing the information about the coin.

  • Figure 4

    (Color online) Hash values of C1, C2, C3, C4, C5.

  • Table   Results for diffusion and confusion tests in the first QHF

    N=1024

    N=2048

    N=10000

    Mean

    Bˉ

    38.8545

    38.5542

    38.5839

    38.6642

    Aˉ

    69.2021

    69.2085

    69.1016

    69.1707

    Tˉ

    108.0566

    107.7627

    107.6855

    107.8349

    P (%)

    48.8944

    48.7614

    48.7265

    48.7941

    ΔT

    6.9318

    6.4671

    6.4822

    6.6270

    ΔP

    3.1366

    2.9263

    2.9331

    2.9987

  • Table   Results for diffusion and confusion tests in the second QHF

    N=1024

    N=2048

    N=10000

    Mean

    Bˉ

    41.4688

    41.3569

    42.5407

    41.7888

    Aˉ

    70.2764

    70.1060

    70.2384

    70.2069

    Tˉ

    111.7452

    111.4629

    112.7791

    111.9957

    P (%)

    50.5634

    50.4357

    51.0313

    50.6768

    ΔT

    7.8213

    8.5069

    8.2029

    8.1770

    ΔP

    3.5391

    3.8493

    3.7117

    3.7000

  • Table   Comparison between our schemes and other QW-based QHFs in terms of collision resistance

    No collision

    One collision

    Two collisions

    More collisions

    ref. [24]

    7688

    375

    1662

    275

    ref. [25]

    9367

    617

    16

    0

    ref. [26]

    9068

    889

    42

    1

    Our first scheme

    9914

    86

    0

    0

    Our second scheme

    9854

    71

    0

    75

  • Table   Comparison between our schemes and other QW-based QHFs in terms of resource consumption. Here, C2, Cv and Cw are 2×2 coin operators, and C4 is a 4×4 coin operator

    The number of the particles

    Quantum operation

    The number of message bits

    ref. [24]

    2

    Sxy(I?C2?C2)

    1

    ref. [25]

    2

    Sxy(I?C4)

    1

    ref. [26]

    1

    SyC2SxC2

    1

    Our first scheme

    1

    Sc(I?Cv)

    2

    Our second scheme

    1

    Sc(I?Cw)

    3

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1