Formation of a monolayer <italic>h</italic>-BN nanomesh on Rh (111) studied using <italic>in-situ</italic> STM

logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 61, Issue 7: 076811(2018) https://doi.org/10.1007/s11433-017-9169-7

Formation of a monolayer h-BN nanomesh on Rh (111) studied using in-situ STM

More info
  • ReceivedNov 30, 2017
  • AcceptedJan 23, 2018
  • PublishedApr 3, 2018
PACS numbers

Abstract

As a member of the 2D family of materials, h-BN is an intrinsic insulator and could be employed as a dielectric or insulating inter-layer in ultra-thin devices. Monolayer h-BN can be synthesized on Rh (111) surfaces using borazine as a precursor. Using in-situ variable-temperature scanning tunneling microscopy (STM), we directly observed the formation of h-BN in real-time. By analyzing the deposition under variable substrate temperatures and the filling rate of the h-BN overlayer vacant hollows during growth, we studied the growth kinetics of how the borazine molecules construct the h-BN overlayer grown on the Rh surface.


Funded by

the Basic Research Program of Jiangsu Province(Grant)

and the National Key Research and Development Plan(Grant)

the National Natural Science Foundation of China(Grant)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51402026, 11774154, and 11790311), the Program for High-Level Entrepreneurial and Innovative Talents Introduction, Jiangsu Province, the Basic Research Program of Jiangsu Province (Grant No. BK20130236), and the National Key Research and Development Plan (Grant No. 2016YFE0125200).


References

[1] Xu M., Liang T., Shi M., Chen H.. Chem. Rev., 2013, 113: 3766 CrossRef PubMed Google Scholar

[2] Butler S. Z., Hollen S. M., Cao L., Cui Y., Gupta J. A., Gutiérrez H. R., Heinz T. F., Hong S. S., Huang J., Ismach A. F., Johnston-Halperin E., Kuno M., Plashnitsa V. V., Robinson R. D., Ruoff R. S., Salahuddin S., Shan J., Shi L., Spencer M. G., Terrones M., Windl W., Goldberger J. E.. ACS Nano, 2013, 7: 2898 CrossRef PubMed Google Scholar

[3] Niu T., Li A.. Prog. Surf. Sci., 2015, 90: 21 CrossRef ADS Google Scholar

[4] Fiori G., Bonaccorso F., Iannaccone G., Palacios T., Neumaier D., Seabaugh A., Banerjee S. K., Colombo L.. Nat. Nanotech., 2014, 9: 768 CrossRef PubMed ADS Google Scholar

[5] Yoon J., Park W., Bae G. Y., Kim Y., Jang H. S., Hyun Y., Lim S. K., Kahng Y. H., Hong W. K., Lee B. H., Ko H. C.. Small, 2013, 9: 3295 CrossRef PubMed Google Scholar

[6] Han W., Kawakami R. K., Gmitra M., Fabian J.. Nat. Nanotech., 2014, 9: 794 CrossRef PubMed ADS arXiv Google Scholar

[7] Liu Z., Gao J., Zhang G., Cheng Y., Zhang Y. W.. Nanotechnology, 2017, 28: 385704 CrossRef PubMed Google Scholar

[8] Zeng H., Zhi C., Zhang Z., Wei X., Wang X., Guo W., Bando Y., Golberg D.. Nano Lett., 2010, 10: 5049 CrossRef PubMed ADS Google Scholar

[9] Lin Y., Connell J. W.. Nanoscale, 2012, 4: 6908 CrossRef PubMed ADS Google Scholar

[10] Laleyan D. A., Zhao S., Woo S. Y., Tran H. N., Le H. B., Szkopek T., Guo H., Botton G. A., Mi Z.. Nano Lett., 2017, 17: 3738 CrossRef PubMed ADS Google Scholar

[11] Bourrellier R., Meuret S., Tararan A., Stéphan O., Kociak M., Tizei L. H. G., Zobelli A.. Nano Lett., 2016, 16: 4317 CrossRef PubMed ADS Google Scholar

[12] Hattori Y., Taniguchi T., Watanabe K., Nagashio K.. ACS Nano, 2015, 9: 916 CrossRef PubMed Google Scholar

[13] Hattori Y., Taniguchi T., Watanabe K., Nagashio K.. Appl. Phys. Lett., 2016, 109: 253111 CrossRef ADS arXiv Google Scholar

[14] Gannett W., Regan W., Watanabe K., Taniguchi T., Crommie M. F., Zettl A.. Appl. Phys. Lett., 2011, 98: 242105 CrossRef ADS arXiv Google Scholar

[15] J. Xie, Z. Y. Zhang, D. Z. Yang, M. S. Si, and D. S. Xue, arXiv: 161003185v2. Google Scholar

[16] Dean C. R., Young A. F., Meric I., Lee C., Wang L., Sorgenfrei S., Watanabe K., Taniguchi T., Kim P., Shepard K. L., Hone J.. Nat. Nanotech., 2010, 5: 722 CrossRef PubMed ADS arXiv Google Scholar

[17] Kharche N., Nayak S. K.. Nano Lett., 2011, 11: 5274 CrossRef PubMed ADS arXiv Google Scholar

[18] Giovannetti G., Khomyakov P. A., Brocks G., Kelly P. J., van den Brink J.. Phys. Rev. B, 2007, 76: 073103 CrossRef ADS arXiv Google Scholar

[19] Aggoune W., Cocchi C., Nabok D., Rezouali K., Akli Belkhir M., Draxl C.. J. Phys. Chem. Lett., 2017, 8: 1464 CrossRef PubMed Google Scholar

[20] Wang H., Lu D., Kim J., Wang Z., Pi S. T., Wu R. Q.. Nanoscale, 2017, 9: 2974 CrossRef PubMed Google Scholar

[21] Kim K. K., Hsu A., Jia X., Kim S. M., Shi Y., Dresselhaus M., Palacios T., Kong J.. ACS Nano, 2012, 6: 8583 CrossRef PubMed Google Scholar

[22] Levendorf M. P., Kim C. J., Brown L., Huang P. Y., Havener R. W., Muller D. A., Park J.. Nature, 2012, 488: 627 CrossRef PubMed ADS Google Scholar

[23] Zhang C., Zhao S., Jin C., Koh A. L., Zhou Y., Xu W., Li Q., Xiong Q., Peng H., Liu Z.. Nat. Commun., 2015, 6: 6519 CrossRef PubMed ADS Google Scholar

[24] Dong G., Fourré E. B., Tabak F. C., Frenken J. W. M.. Phys. Rev. Lett., 2010, 104: 096102 CrossRef PubMed ADS Google Scholar

[25] Laskowski R., Blaha P.. Phys. Rev. B, 2010, 81: 075418 CrossRef ADS Google Scholar

[26] Müller F., Hüfner S., Sachdev H., Laskowski R., Blaha P., Schwarz K.. Phys. Rev. B, 2010, 82: 113406 CrossRef ADS Google Scholar

[27] Song L., Ci L., Lu H., Sorokin P. B., Jin C., Ni J., Kvashnin A. G., Kvashnin D. G., Lou J., Yakobson B. I., Ajayan P. M.. Nano Lett., 2010, 10: 3209 CrossRef PubMed ADS Google Scholar

[28] Kim G., Jang A. R., Jeong H. Y., Lee Z., Kang D. J., Shin H. S.. Nano Lett., 2013, 13: 1834 CrossRef PubMed ADS Google Scholar

[29] Corso M., Auw?rter W., Muntwiler M., Tamai A., Greber T., Osterwalder J.. Science, 2004, 303: 217 CrossRef PubMed ADS Google Scholar

[30] Farkas A. P., T?r?k P., Solymosi F., Kiss J., Kónya Z.. Appl. Surf. Sci., 2015, 354: 367 CrossRef ADS Google Scholar

  • Figure 1

    (Color online) (a) STM image of Rh (111) at 627?K, after exposure at that temperature to 3×10?9 mbar borazine for 12?min. The Rh steps are saturated by small fractal-like islands. (b) STM image after the substrate temperature increased to 806?K. The h-BN islands appear compact and the nanomesh superstructures can be observed within. The islands did not occur primarily at Rh substrate steps. (c) After a further temperature increase to 865?K, the islands become more compact. (d) The same area as in panel (c), after an additional borazine exposure at pressures ranging from 2×10?9 to 1.2×10?8 mbar for 78?min, while the temperature of the sample was kept at 865?K. The surface was fully covered by a h-BN overlay showing a variety of orientations. The blue lines indicate the contours of the initial islands in panel (c). Most of the growth followed the orientations of these initial islands. The black arrow indicates a new domain that formed during growth. Within the circles, the defects present in panel (c) have been removed. Vbias = 2.9, 2.8, ?1.0, and ?1.0?V for panels (a)-(d), respectively, It = 0.05 nA.

  • Figure 2

    (Color online) STM images (170?nm170?nm) at the beginning (a) and end (b) of the filling of a vacant hollow in the h-BN overlayer on Rh (111), with a substrate temperature of 978?K and borazine pressure of 3.2×10?9 mbar. (c) Time dependence of the area of the vacant hollow, relative to the area in panel (a). The slopes of the three linear fits to the initial, intermediate, and end stages of the process are ?3.1×10?3, ?0.79×10?3, and 5.1×103?s?1 respectively, corresponding to λ-values of 4.6, 1.2, and 7.6 in eq. (2). As argued in the text, the values exceeding 3 indicate that a significant supply of B and N atoms originate from the lower Rh terrace, to which the vacant hollow is connected.

  • Figure 3

    (Color online) STM images (100?nm100?nm) at the beginning (a) and end (b) of the filling of a vacant hollow in the h-BN overlayer on Rh (111), with a substrate temperature of 978?K and borazine pressure of 1.5×10?9 mbar. (c) Time dependence of the area of the vacant hollow, relative to the area in panel (a). The slope of the linear fit of ?1.8×10?3?s?1 corresponds to a λ-value of 5.7 in eq. (2). As argued in the text, this value, being higher than 3, indicates that a significant supply of B and N atoms originates from the higher Rh terrace on the right, to which the vacant hollow is connected.

  • Figure 4

    (Color online) STM images (100?nm100?nm) at the beginning (a) and end (b) of the filling of two vacant hollows in the h-BN overlayer on Rh (111), with a substrate temperature of 865?K and borazine pressure of 1.0×10?8 mbar. In plots (c) and (d), the black circles are the time-dependent areas measured directly from the images of the upper and lower vacant islands, relative to their starting sizes in image (a). The linear fits for the full ranges in (c) and (d) have slopes of ?2.25×10?3 and ?2.64×10?3?s?1, corresponding to λ-values of 1.0 and 1.2 in eq. (2). The slopes of the final sections of these two curves both correspond to λ=3, showing that all borazine impinging on the enclosed Rh is consumed in the final stages. The blue lines in (c) and (d) are the areas numerically calculated using eq. (4) with finite capture zone widths of w = 0.8 and 0.1?nm respectively.

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1