There is no abstract available for this article.
This work was supported by the National Natural Science Foundation of China (Grant Nos. 11774286, 11604258, 11534008, 11374238, and 11574247), and the China Postdoctoral Science Foundation (Grant No. 2016M592771).
[1] Fang N.. Science, 2005, 308: 534-537 CrossRef PubMed ADS Google Scholar
[2] Berggren K., Bard A., Wilbur J., Gillaspy J., Helg A., McClelland J., Rolston S., Phillips W., Prentiss M., Whitesides G.. Science, 1995, 269: 1255-1257 CrossRef ADS Google Scholar
[3] Firstenberg O., London P., Shuker M., Ron A., Davidson N.. Nat. Phys, 2009, 5: 665-668 CrossRef ADS arXiv Google Scholar
[4] Yavuz D. D., Proite N. A.. Phys. Rev. A, 2007, 76: 041802 CrossRef ADS Google Scholar
[5] Gorshkov A. V., Jiang L., Greiner M., Zoller P., Lukin M. D.. Phys. Rev. Lett., 2008, 100: 093005 CrossRef PubMed ADS arXiv Google Scholar
[6] Kapale K. T., Agarwal G. S.. Opt. Lett., 2010, 35: 2792 CrossRef ADS Google Scholar
[7] Dey T. N., Evers J.. Phys. Rev. A, 2011, 84: 043842 CrossRef ADS arXiv Google Scholar
[8] Verma O. N., Zhang L., Evers J., Dey T. N.. Phys. Rev. A, 2013, 88: 013810 CrossRef ADS arXiv Google Scholar
[9]
J. Zhou, B. J. Liu, Z. P. Hong, and Z. Y. Xue, Sci. China-Phys. Mech. Astron.
[10] Ding D. S., Zhou Z. Y., Shi B. S.. Opt. Lett., 2014, 39: 240 CrossRef ADS arXiv Google Scholar
[11] Cao M., Zhang L., Yu Y., Ye F., Wei D., Guo W., Zhang S., Gao H., Li F.. Opt. Lett., 2014, 39: 2723 CrossRef ADS Google Scholar
[12] Zhang L., Evers J.. Phys. Rev. A, 2014, 89: 013817 CrossRef ADS arXiv Google Scholar
[13] Verma O. N., Dey T. N.. Phys. Rev. A, 2015, 91: 013820 CrossRef ADS arXiv Google Scholar
[14] Cho Y. W., Oh J. E., Kim Y. H.. Opt. Express, 2012, 20: 5809 CrossRef ADS Google Scholar
[15] Cho Y. W., Oh J. E., Kim Y. H.. Phys. Rev. A, 2012, 86: 013844 CrossRef ADS Google Scholar
[16] Zhong M. L., Xu P., Lu L. L., Zhu S. N.. Sci. China-Phys. Mech. Astron., 2016, 59: 670311 CrossRef ADS Google Scholar
[17] Li J., Luo B., Yang D., Yin L., Wu G., Guo H.. Sci. Bull., 2017, 62: 717-723 CrossRef Google Scholar
[18] Yu Y., Wang C., Liu J., Wang J., Cao M., Wei D., Gao H., Li F.. Opt. Express, 2016, 24: 18290 CrossRef ADS Google Scholar
[19] Cao M., Yang X., Wang J., Qiu S., Wei D., Gao H., Li F.. Opt. Lett., 2016, 41: 5349 CrossRef ADS Google Scholar
[20] Cao M., Wang J., Yang X., Qiu S., Gao H., Li F.. Sci Rep, 2017, 7: 8015 CrossRef PubMed Google Scholar
[21] Wang Y., Wang F., Liu R., Chen D., Gao H., Zhang P., Li F.. Opt. Lett., 2015, 40: 5323 CrossRef ADS arXiv Google Scholar
[22]
G. F. Xu, Sci. China-Phys. Mech. Astron.
[23] Yang Z., Maga {n}a-Loaiza O. S., Mirhosseini M., Zhou Y., Gao B., Gao L., Rafsanjani S. M. H., Long G. L., Boyd R. W.. Light Sci Appl, 2017, 6: e17013 CrossRef Google Scholar
Figure 1
(Color online) (a) Theoretical model of the probe beam propagation through an atomic medium. (b) Three-level $~\Lambda~$ configuration. A three-level diagram of $D$$_{1}$ line of $^{87}$Rb. The energy level configuration is taken as the following: $|b\rangle~(5^{2}S_{1/2},F=2,M_{F}=2)$ and $|c\rangle~(5^{2}S_{1/2},F=2,M_{F}=0)$ are two Zeeman sublevels of the $^{87}$Rb atom, $|a\rangle~(5^{2}P_{1/2},F'=1)$ is the excited state. $\omega_{\text{c}}$ and $\omega_{\text{p}}$ correspond to the frequency of coupling and probe beams. $\Delta_{\text{p}}=\omega_{\text{p}}-\omega_{ac}$ is the single-photon detuning of the probe beam, $\Delta_{\text{c}}=\omega_{\text{c}}-\omega_{ab}$ is the single-photon detuning of the coupling beam.
Figure 2
(Color online) (a) Normalized intensity of the transmitted probe beam. The output is taken at exit plane of the 5-cm-long medium. We choose the parameters for numerical calculations as given by $N=10^{12}$ cm$^{-3}$, $g^{0}=0.1\gamma$, $G^{0}=0.7\gamma$ and $\lambda=795$ nm. (b) Variation of the full width at half maximum of the probe beam with different $\Delta_{\text{c}}$ for $\Delta_{\text{p}}=0$.
Figure 3
(Color online) The experimental setup. SMF, single mode optical fiber; L, lens; M, mirrors; HWP, half-wave plate; QWP, quarter-wave plate; PBS, polarization beam splitter; BS, beam splitter; CCD, charge coupled device camera; AOM, acoustic optical modulator.
Figure 4
(Color online) The first row of graphs are intensity distributions ((a), (c)) and the second order correlation ((b), (d)) of thermal light in free space and CPT condition; the second row (without atoms) ((e)-(h)) and third row (with atoms) ((i)-(l)) represent corresponding speckle in different color box. The frequency detuning of coupling beam is $\Delta_{\text{c}}$=74 MHz. The horizontal coordinates represent pixels and a pixel is 5.8 $\mu$m.
Figure 5
(Color online) The experimental results of GI. (a) Detection setup (see text for detail description). (b)-(d) The cases in free space , blue detuning and red detuning of coupling beam. The horizontal coordinates represent pixels and a pixel is 5.8 $\mu$m.
Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有
京ICP备18024590号-1