Self-diffusion measurements in In<sub>2</sub>O<sub>3</sub> isotopic heterostructures: Oxygen vacancy energetics

logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 61, Issue 11: 117321(2018) https://doi.org/10.1007/s11433-018-9209-9

Self-diffusion measurements in In2O3 isotopic heterostructures: Oxygen vacancy energetics

More info
  • ReceivedMar 2, 2018
  • AcceptedMar 26, 2018
  • PublishedMay 22, 2018

Abstract

There is no abstract available for this article.


Funded by

the National Natural Science Foundation of China(Grants)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grants Nos. 11674405, and 11675280).


References

[1] Hung L. S., Chen C. H.. Mater. Sci. Eng.-R-Rep., 2002, 39: 143 CrossRef Google Scholar

[2] Brabec C. J., Sariciftci N. S., Hummelen J. C.. Adv. Funct. Mater., 2001, 11: 15 CrossRef Google Scholar

[3] Bierwagen O.. Semicond. Sci. Technol., 2015, 30: 024001 CrossRef ADS Google Scholar

[4] Babu S. H., Kaleemulla S., Rao N. M., Krishnamoorthi C.. J. Magn. Magn. Mater., 2016, 416: 66 CrossRef ADS Google Scholar

[5] Meng Y., Liu G., Liu A., Guo Z., Sun W., Shan F.. ACS Appl. Mater. Interfaces, 2017, 9: 10805 CrossRef Google Scholar

[6] Tanaka I., Mizuno M., Adachi H.. Phys. Rev. B, 1997, 56: 3536 CrossRef ADS Google Scholar

[7] Tanaka I., Oba F., Tatsumi K., Kunisu M., Nakano M., Adachi H.. Mater. Trans., 2002, 43: 1426 CrossRef Google Scholar

[8] ágoston P., Erhart P., Klein A., Albe K.. J. Phys.-Condens. Matter, 2009, 21: 455801 CrossRef PubMed ADS Google Scholar

[9] Bierwagen O., Speck J. S.. Appl. Phys. Lett., 2010, 97: 072103 CrossRef ADS Google Scholar

[10] Tomita T., Yamashita K., Hayafuji Y., Adachi H.. Appl. Phys. Lett., 2005, 87: 051911 CrossRef ADS Google Scholar

[11] Lany S., Zakutayev A., Mason T. O., Wager J. F., Poeppelmeier K. R., Perkins J. D., Berry J. J., Ginley D. S., Zunger A.. Phys. Rev. Lett., 2012, 108: 016802 CrossRef PubMed ADS Google Scholar

[12] Zhang K. H. L., Egdell R. G., Offi F., Iacobucci S., Petaccia L., Gorovikov S., King P. D. C.. Phys. Rev. Lett., 2013, 110: 056803 CrossRef PubMed ADS Google Scholar

[13] Veal B. W., Kim S. K., Zapol P., Iddir H., Baldo P. M., Eastman J. A.. Nat. Commun., 2016, 7: 11892 CrossRef PubMed ADS Google Scholar

[14] Gan J., Lu X., Wu J., Xie S., Zhai T., Yu M., Zhang Z., Mao Y., Wang S. C. I., Shen Y., Tong Y.. Sci. Rep., 2013, 3: 1021 CrossRef PubMed ADS Google Scholar

[15] Lei F., Sun Y., Liu K., Gao S., Liang L., Pan B., Xie Y.. J. Am. Chem. Soc., 2014, 136: 6826 CrossRef PubMed Google Scholar

[16] Liu L., Mei Z., Tang A., Azarov A., Kuznetsov A., Xue Q. K., Du X.. Phys. Rev. B, 2016, 93: 235305 CrossRef ADS arXiv Google Scholar

[17] Azarov A., Venkatachalapathy V., Mei Z., Liu L., Du X., Galeckas A., Monakhov E., Svensson B. G., Kuznetsov A.. Phys. Rev. B, 2016, 94: 195208 CrossRef ADS Google Scholar

[18] Mei Z. X., Wang Y., Du X. L., Zeng Z. Q., Ying M. J., Zheng H., Jia J. F., Xue Q. K., Zhang Z.. J. Cryst. Growth, 2006, 289: 686 CrossRef ADS Google Scholar

[19] Vidya R., Ravindran P., Fjellv?g H., Svensson B. G., Monakhov E., Ganchenkova M., Nieminen R. M.. Phys. Rev. B, 2011, 83: 045206 CrossRef ADS Google Scholar

[20] ágoston P., Albe K.. Phys. Rev. B, 2010, 81: 195205 CrossRef ADS Google Scholar

[21] Wirtz G. P., Takiar H. P.. J. Am. Ceramic Soc., 1981, 64: 748 CrossRef Google Scholar

  • Figure 1

    (Color online) (a) A schematic illustration of the isotopic samples’ structure and 18O diffusion source. (b) 18O concentration versus depth profiles in the as-grown In-rich Sample “I” and O-rich Sample “O”.

  • Figure 2

    (Color online) Diffusion profiles of 18O concentrations in the as-grown Sample I and I after annealing in vacuum for 20 min (a), Samples I and O after annealing at 1023?K (b) and 1073?K (c). (d) Arrhenius plots of the extracted 18O self-diffusion coefficient D versus the reciprocal temperature 1000/T. The solid lines show the best fits to the self-diffusion coefficients. The inset manifests the obtained activation energies for Samples I and O, respectively.

  • Figure 3

    (Color online) (a) Temperature dependences of the carrier concentration (n~T) over a temperature range of 298-823?K for Samples I and O. (b) The Arrhenius plots for the temperature range of 473-698?K. The linear fittings are drawn in dashed lines. The inset manifests the obtained activation energies for Samples I and O.

  • Figure 4

    (Color online) (a) Normalized In 3d core level XPS spectra of the as-grown Samples O, I and Sample I after annealing in vacuum (I ANV); (b) curve fittings of the O 1s peaks in the XPS spectra of Samples O, I and I after annealing in vacuum (I ANV), respectively. The black curves are the experimental data, which are deconvoluted into two peaks centered at 529.5?eV (red dashed curves) and 531.2?eV (blue dashed curves).

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1