Interaction between the atmospheric boundary layer and a stand-alone wind turbine in Gansu—Part II: Numerical analysis

logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 61, Issue 9: 094712(2018) https://doi.org/10.1007/s11433-018-9214-1

Interaction between the atmospheric boundary layer and a stand-alone wind turbine in Gansu—Part II: Numerical analysis

Zhi Zheng1,2,3,??, ZhiTeng Gao1,??, DeShun Li1,2,3, RenNian Li1,2,3,*, Ye Li4,*, QiuHao Hu4, WenRui Hu5,*
More info
  • ReceivedFeb 10, 2018
  • AcceptedMar 28, 2018
  • PublishedMay 3, 2018
PACS numbers

Abstract

To analyze the interaction between wind turbines and the atmospheric boundary layer, we integrated a large-eddy simulation with an actuator line model and examined the characteristics of wind-turbine loads and wakes with reference to a corresponding experiment in Gansu. In the simulation, we set the wind turbine to have a rotor diameter of 14.8?m and a tower height of 15.4?m in the center of an atmospheric boundary layer with a 10.6° yaw angle. The results reveal an obviously skewed wake structure behind the rotor due to the thrust component normal to the flow direction. The power spectra of the inflow fluctuation velocity exhibit a region of ?5/3 slope, which confirms the ability of large-eddy simulations to reproduce the energy cascade from larger to smaller scales. We found there to be more energy in the power spectrum of the axial velocity, which shows that coherent turbulence structures have more energy in the horizontal direction. By the conjoint analysis of atmospheric turbulence and wind-turbine loads, we found that when the inflow wind direction changes rapidly, the turbulence kinetic energy and coherent turbulence kinetic energy in the atmospheric turbulence increase, which in turn causes fluctuations in the wind turbine load. Furthermore, anisotropic atmospheric turbulence causes an asymmetric load cycle, which imposes a strike by the turbine blade on the shaft, thereby increasing the fatigue load on the shaft. Our main conclusion is that the atmospheric boundary layer has a strong effect on the evolution of the wake and the structural response of the turbine.


Funded by

and the National Natural Science Foundation of China(Grant)

the National Basic Research Program of China(Grant)


Acknowledgment

This work was supported by the National Basic Research Program of China (Grant No. 2014CB046201), the National Natural Science Foundation of China (Grant Nos. 51465033, 51766009, and 51479114), the Thousand Talents Program, NSFC-RCUK_EPSRC, the platform construction of ocean energy comprehensive supporting service (2014) (Grant No. GHME2014ZC01), the High-tech Ship Research Projects Sponsored by MIITC Floating Support platform project (Grant No. 201622), and the State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University.


Interest statement

These authors contributed equally to this work.


References

[1] Vautard R., Thais F., Tobin I., Bréon F. M., Devezeaux de Lavergne J. G., Colette A., Yiou P., Ruti P. M.. Nat. Commun., 2014, 5: 3196 CrossRef PubMed ADS Google Scholar

[2] Mirocha J. D., Kosovic B., Aitken M. L., Lundquist J. K.. J. Renew. Sustain. Energy, 2014, 6: 013104 CrossRef Google Scholar

[3] Jacobson M. Z., Archer C. L., Kempton W.. Nat. Clim Change, 2014, 4: 195 CrossRef ADS Google Scholar

[4] Lu H., Porté-Agel F.. Phys. Fluids, 2011, 23: 065101 CrossRef ADS Google Scholar

[5] Roy S. B., Pacala S. W., Walko R. L.. J. Geophys. Res., 2004, 109: D19101 CrossRef ADS Google Scholar

[6] Shamsoddin S., Porté-Agel F.. Bound.-Layer Meteorol., 2017, 163: 1 CrossRef ADS Google Scholar

[7] Chamorro L. P., Porté-Agel F.. Bound.-Layer Meteorol., 2010, 136: 515 CrossRef ADS Google Scholar

[8] Carper M. A., Porté-Agel F.. Bound.-Layer Meteorol., 2007, 126: 157 CrossRef ADS Google Scholar

[9] Carper M. A., Porté-Agel F.. Bound.-Layer Meteorol., 2008, 127: 73 CrossRef ADS Google Scholar

[10] Bastankhah M., Porté-Agel F.. Energies, 2017, 10: 908 CrossRef Google Scholar

[11] Churchfield M. J., Lee S., Michalakes J., Moriarty P. J.. J. Turbul, 2012, 13: N14 CrossRef Google Scholar

[12] Espa?a G., Aubrun S., Loyer S., Devinant P.. J. Wind Eng. Industrial Aerodyn., 2012, 101: 24 CrossRef Google Scholar

[13] Shamsoddin S., Porté-Agel F.. J. Fluid Mech., 2018, 837: R3 CrossRef ADS Google Scholar

[14] Keck R. E., de Maré M., Churchfield M. J., Lee S., Larsen G., Aagaard Madsen H.. Wind Energ., 2015, 17: 1689 CrossRef ADS Google Scholar

[15] Abkar M., Porté-Agel F.. Phys. Fluids, 2015, 27: 035104 CrossRef ADS Google Scholar

[16] Hong J., Toloui M., Chamorro L. P., Guala M., Howard K., Riley S., Tucker J., Sotiropoulos F.. Nat. Commun., 2014, 5: 4216 CrossRef PubMed ADS Google Scholar

[17] Adaramola M. S., Krogstad P. ?.. Renew. Energy, 2011, 36: 2078 CrossRef Google Scholar

[18] Martínez-Tossas L. A., Churchfield M. J., Leonardi S.. Wind Energ., 2015, 18: 1047 CrossRef ADS Google Scholar

[19] Nilsson K., Ivanell S., Hansen K. S., Mikkelsen R., S?rensen J. N., Breton S. P., Henningson D.. Wind Energ., 2015, 18: 449 CrossRef ADS Google Scholar

[20] Liu C. Q., Cai X. S.. Sci. China-Phys. Mech. Astron., 2017, 60: 084731 CrossRef ADS Google Scholar

[21] Wang Y. Q., Liu C. Q.. Sci. China-Phys. Mech. Astron., 2017, 60: 114712 CrossRef ADS Google Scholar

[22] Hu Q., Li Y., Di Y., Chen J.. J. Renew. Sustain. Energy, 2017, 9: 064501 CrossRef Google Scholar

[23] Wang G., Zheng X.. J. Fluid Mech., 2016, 802: 464 CrossRef ADS Google Scholar

[24] Vermeer L. J., S?rensen J. N., Crespo A.. Prog. Aerosp. Sci., 2003, 39: 467 CrossRef ADS Google Scholar

[25] Porté-Agel F., Wu Y. T., Lu H., Conzemius R. J.. J. Wind Eng. Ind. Aerodyn., 2011, 99: 154 CrossRef Google Scholar

[26] Calaf M., Meneveau C., Meyers J.. Phys. Fluids, 2010, 22: 015110 CrossRef ADS Google Scholar

[27] Jimenez A., Crespo A., Migoya E., Garcia J.. Environ. Res. Lett., 2008, 3: 015004 CrossRef ADS Google Scholar

[28] Marjanovic N., Mirocha J. D., Kosovi? B., Lundquist J. K., Chow F. K.. J. Renew. Sustain. Energy, 2017, 9: 063308 CrossRef Google Scholar

[29] Martínez-Tossas L. A., Churchfield M. J., Meneveau C.. Wind Energ., 2017, 20: 1083 CrossRef ADS Google Scholar

[30] Shives M., Crawford C.. Renew. Energy, 2016, 92: 273 CrossRef Google Scholar

[31] Howland M. F., Bossuyt J., Martínez-Tossas L. A., Meyers J., Meneveau C.. J. Renew. Sustain. Energy, 2016, 8: 043301 CrossRef Google Scholar

[32] S?rensen J. N., Shen W. Z.. J. Fluids Eng., 2002, 124: 393 CrossRef Google Scholar

[33] Troldborg N., S?rensen J. N., Mikkelsen R.. J. Phys.-Conf. Ser., 2007, 75: 012063 CrossRef ADS Google Scholar

[34] D. Li, T. Guo, Y. Li, J. Hu, Z. Zheng, Y. Li, Y. Di, W. Hu, and R. Li, Sci. China-Phys. Mech. Astron. doi: 10.1007/s11433-018-9219-y. Google Scholar

[35] Ghate A. S., Lele S. K.. J. Fluid Mech., 2017, 819: 494 CrossRef ADS Google Scholar

[36] N. Troldborg, Actuator Line Modeling of Wind Turbine Wakes, Dissertation for the Doctoral Degree (Technical University of Denmark, Denmark, 2009), p. 13. Google Scholar

[37] Moeng C. H.. J. Atmos. Sci., 1984, 41: 2052 CrossRef Google Scholar

[38] Rhie C. M., Chow W. L.. AIAA J., 1983, 21: 1525 CrossRef ADS Google Scholar

[39] I. H. Abbott, and A. E. Von Doenhoff, Theory of Wing Sections. Including a Summary of Airfoil Data (Dover, NewYork, 1959). Google Scholar

[40] L. A. Viterna, and R. D. Corrigan, Fixed Pitch Rotor Performance of Large Horizontal Axis Wind Turbines, Technical Report (NASA, 1982). Google Scholar

[41] P. K. Kundu, and I. M. Cohen, Fluid Mechanics (Elsevier, Burlington, 2010), pp. 541–564. Google Scholar

[42] R. P. Coleman, A. M. Feingold, and C. W. Stempin, Evaluation of the Induced-Velocity Field of an Idealized Helicoptor Rotor, Technical Report (NASA, 1945). Google Scholar

[43] J. M. Jonkman, and M. L. Buhl, FAST User’s Guide, Technical Report (NREL, 2005). Google Scholar

[44] Li Y., Yi J. H., Song H., Wang Q., Yang Z., Kelley N. D., Lee K. S.. Appl. Phys. Lett., 2014, 105: 023902 CrossRef ADS Google Scholar

[45] B. J. Jonkman, TurbSim User’s Guide, Technical Report (NREL, 2009). Google Scholar

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1