Investigations of an enclosed annular rotor-stator system <sc>with LES method</sc>

logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 61, Issue 11: 114711(2018) https://doi.org/10.1007/s11433-018-9228-x

Investigations of an enclosed annular rotor-stator system with LES method

More info
  • ReceivedFeb 14, 2018
  • AcceptedApr 23, 2018
  • PublishedSep 4, 2018
PACS numbers

Abstract

In this study, the flows in an enclosed annular rotor-stator system with the Reynolds number ranging from 0.75×105 to 3.75×105 and an aspect ratio of 36.5 are investigated using the LES method. Few studies have explored such a rotor-stator system with this aspect ratio and the flow structure on the rotor side. The mean flow structure varies from a torsional Couette type to a Batchelor type as the Reynolds number increases. The onset of the instability in the B?dewadt layer adjacent to the stator is delayed, whereas it is promoted in the Ekman layer adjacent to the rotor. Both the layers demonstrate rich spiral structures. Turbulent spirals are observed to occur at the rotor disk side that also generates TS-wave-like (Tollmien-Schlichting) structures between adjacent spiral arms. Further, the turbulence at the stator is complex and interesting. Statistically, the turbulence is highly anisotropic near both the rotating and nonrotating disks, which is depicted by the Reynolds stresses.


Funded by

and the National Key Basic Research Programme of China(Grant)

the National Natural Science Foundation of China(Grant)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11272183, and 11572176), and the National Key Basic Research Programme of China (Grant No. 2014CB744801). This work was supported by IHI Corporation. The authors are particularly thankful to Dr. Tomoki Kawakubo, Dr. Hideaki Tamaki and Dr. Satoshi Ohuchida for valuable discussions and suggestions.


References

[1] V. T. Kármán, and Z. Angew. Math. Mech. 1, 233 (1921). Google Scholar

[2] Zandbergen P. J., Dijkstra D.. Annu. Rev. Fluid Mech., 1987, 19: 465 CrossRef ADS Google Scholar

[3] J. M. Owen, and R. H. Rogers, Flow and Heat Transfer in Rotating-Disc Systems (Wiley & Sons, New York, 1989). Google Scholar

[4] P. R. N. Childs, Rotating Flow (Butterworth-Heinemann, Oxford, 2011). Google Scholar

[5] Launder B., Poncet S., Serre E.. Annu. Rev. Fluid Mech., 2010, 42: 229 CrossRef ADS Google Scholar

[6] Chen X., She Z. S.. Sci. China-Phys. Mech. Astron., 2016, 59: 114711 CrossRef ADS arXiv Google Scholar

[7] V. W. Ekman, Nytt Mag. Nat. 40, 37 (1902). Google Scholar

[8] B?dewadt U. T.. Z. Angew. Math. Mech., 1940, 20: 241 CrossRef ADS Google Scholar

[9] Batchelor G. K.. Q. J. Mech. Appl. Math., 1951, 4: 29 CrossRef Google Scholar

[10] Daily J. W., Nece R. E.. J. Basic Eng., 1960, 82: 217 CrossRef Google Scholar

[11] Itoh M., Yamada Y., Nishioka K.. JSMET, 1985, 51: 452 CrossRef Google Scholar

[12] M. Itoh, Y. Yamada, S. Imao, and M. Gonda, Engineering Turbulence Modeling and Experiments (Elsevier, New York, 1990), p. 659. Google Scholar

[13] Itoh M., Yamada Y., Imao S., Gonda M.. Exp. Thermal Fluid Sci., 1992, 5: 359 CrossRef Google Scholar

[14] Cheah S. C., Iacovides H., Jackson D. C., Ji H., Launder B. E.. Exp. Thermal Fluid Sci., 1994, 9: 445 CrossRef Google Scholar

[15] J. M. Owen, Flow and Heat Transfer in Rotating Disc Systems (Aichi Shuppan, Tokyo, 2000), p. 33. Google Scholar

[16] Schouveiler L., Le Gal P., Chauve M. P.. J. Fluid Mech., 2001, 443: 329 CrossRef Google Scholar

[17] Lygren M., Andersson H. I.. J. Fluid Mech., 2001, 426: 297 CrossRef ADS Google Scholar

[18] M. Itoh, Turbulent Flows (ASME, New York, 1995), p. 27. Google Scholar

[19] Serre E., Crespo Del Arco E., Bontoux P.. J. Fluid Mech., 2001, 434: 65 CrossRef Google Scholar

[20] Wu X., Squires K. D.. J. Fluid Mech., 2000, 418: 231 CrossRef ADS Google Scholar

[21] Littell H. S., Eaton J. K.. J. Fluid Mech., 1994, 266: 175 CrossRef ADS Google Scholar

[22] Andersson H. I., Lygren M.. Int. J. Heat Fluid Flow, 2006, 27: 551 CrossRef Google Scholar

[23] E. Séverac, S. Poncet, E. Serre, and M. P. Chauve, Phys. Fluids. 19, 85 (2007). Google Scholar

[24] Washizu T., Lubisch F., Obi S.. Flow Turb. Comb., 2013, 91: 607 CrossRef Google Scholar

[25] Makino S., Inagaki M., Nakagawa M.. Flow Turb. Comb., 2015, 95: 399 CrossRef Google Scholar

[26] M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, Phys. Fluids A-Fluid Dya. 3, 1760 (1991). Google Scholar

[27] Lilly D. K.. Phys. Fluids A-Fluid Dyn., 1992, 4: 633 CrossRef ADS Google Scholar

[28] Smagorinsky J.. Mon. Wea. Rev., 1963, 91: 99 CrossRef Google Scholar

[29] Shi K., Chen H. X., Fu S.. Sci. China-Phys. Mech. Astron., 2013, 56: 353 CrossRef ADS Google Scholar

[30] Zhang Y. F., Chen H. X., Fu S.. Sci. China-Phys. Mech. Astron., 2012, 55: 828 CrossRef ADS Google Scholar

[31] Huang J. B., Xiao Z. X., Liu J., Fu S.. Sci. China-Phys. Mech. Astron., 2012, 55: 260 CrossRef ADS Google Scholar

[32] Viazzo S., Poncet S., Serre E., Randriamampianina A., Bontoux P.. Flow Turb. Comb., 2012, 88: 63 CrossRef Google Scholar

  • Figure 1

    (Color online) Schematic of an enclosed annular rotor-stator system.

  • Figure 2

    (Color online) Verification of the current simulation method. (a) Normalized radial velocity; (b) normalized circumferential velocity; (c) square root of the normalized radial Reynolds normal stress component; (d) square root of the normalized circumferential Reynolds normal stress component.

  • Figure 3

    The geometric shape of the mesh.

  • Figure 4

    (Color online) Verification of the mesh dependency. (a) Radial velocity at r*=0.5; (b) circumferential velocity at r*=0.5; (c) radial variation of the shear stress on the rotor.

  • Figure 5

    (Color online) Axial distributions of the mean radial velocity. (a) Case 1; (b) case 2; (c) case 3; (d) case 4; (e) case 5.

  • Figure 6

    (Color online) Axial distributions of the mean circumferential velocity. (a) Case 1; (b) case 2; (c) case 3; (d) case 4; (e) case 5.

  • Figure 7

    (Color online) Axial distributions of the square root of the radial Reynolds normal stresses. (a) Case 1; (b) case 2; (c) case 3; (d) case 4; (e) case 5.

  • Figure 8

    (Color online) Axial distributions of the square root of circumferential Reynolds normal stresses. (a) Case 1; (b) case 2; (c) case 3; (d) case 4; (e) case 5.

  • Figure 9

    (Color online) Comparison of all the six Reynolds-stress components at r*=0.5 for case 5.

  • Figure 10

    (Color online) Iso-surfaces of the Q-criterion with the rotor rotating counterclockwise on the rotor side. (a) Case 1; (b) case 2; (c) case 3; (d) case 4; (e) case 5.

  • Figure 11

    (Color online) Iso-surfaces of the Q-criterion with the rotor rotating counterclockwise on the stator side. (a) Case 1; (b) case 2; (c) case 3; (d) case 4; (e) case 5.

  • Figure 12

    (Color online) Turbulent structures in the vicinity of both disks in case 5. (a) TS-wave-like structures in the vicinity of the rotor; (b) the merging and destruction of the spiral vertical structures on the stator side.

  • Figure 13

    (Color online) Contours of radial velocity on the stator side. (a) Case 1, z*=0.17; (b) case 2, z*=0.13; (c) case 3, z*=0.10; (d) case 4, z*=0.09; (e) case 5, z*=0.07.

  • Figure 14

    (Color online) Contours of radial velocity on the rotor side. (a) Case 1, z*=0.91; (b) case 2, z*=0.91; (c) case 3, z*=0.91; (d) case 4, z*=0.92; (e) case 5, z*=0.93.

  • Figure 15

    (Color online) Contours of circumferential velocity on the stator side. (a) Case 1, z*=0.17; (b) case 2, z*=0.13; (c) case 3, z*=0.10; (d) case 4, z*=0.09; (e) case 5, z*=0.07.

  • Figure 16

    (Color online) Contours of circumferential velocity on the rotor side. (a) Case 1, z*=0.91; (b) case 2, z*=0.91; (c) case 3, z*=0.91; (d) case 4, z*=0.92; (e) case 5, z*=0.93.

  • Table 1   Rotating speed and Reynolds numbers in different cases

    Case

    Rotating speeds of the rotor (rpm)

    Reynolds number

    1

    2000

    0.75×105

    2

    4000

    1.50×105

    3

    6000

    2.25×105

    4

    8000

    3.00×105

    5

    10000

    3.75×105

  • Table 2   Mesh resolutions

    Mesh No.

    Resolution (r×θ×z)

    Total grid

    1

    121×480×41

    2381280

    2

    136×540×46

    3378240

    3

    151×600×51

    4620600

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1