Dual effects of disorder on the strongly-coupled system composed of a single quantum dot and a photonic crystal L3 cavity

logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 62, Issue 6: 064211(2019) https://doi.org/10.1007/s11433-018-9290-5

Dual effects of disorder on the strongly-coupled system composed of a single quantum dot and a photonic crystal L3 cavity

More info
  • ReceivedJun 21, 2018
  • AcceptedAug 21, 2018
  • PublishedNov 20, 2018
PACS numbers

Abstract

Light-matter interaction in the strong coupling regime enables light control at the single-photon level. We develop numerical method and analytical expressions to calculate the decay kinetics of an initially excited two-level quantum emitter in dielectric nanostructure and single-mode cavity, respectively. We use these methods to discover the dual effects of disorder on the strongly-coupled system composed of a single quantum dot and a photonic crystal L3 cavity. The quality factor is sensitive to disorder, while the g factor and vacuum Rabi splitting are robust against disorder. A small amount of disorder may either decrease or increase the light localization and the light-matter interaction. Our methods offer flexible and efficient theoretical tools for the investigation of light-matter interaction, especially cavity quantum electrodynamics. Our findings significantly lower the requirements for optimization effort and fabrication precision and open up many promising practical possibilities.


Funded by

the National Natural Science Foundation of China(GrantsNos.115040581144718161475038)

the Natural Science Foundation of Guangdong Province of China(GrantNo.2015A030310213)

and the Science and Technology Program of Guangzhou(GrantNo.201804010175)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grants Nos. 11504058, 11447181, and 61475038), the Natural Science Foundation of Guangdong Province of China (Grant No. 2015A030310213), and the Science and Technology Program of Guangzhou (Grant No. 201804010175).


References

[1] Khitrova G., Gibbs H. M., Kira M., Koch S. W., Scherer A.. Nat. Phys., 2006, 2: 81 CrossRef ADS Google Scholar

[2] Lodahl P., Mahmoodian S., Stobbe S.. Rev. Mod. Phys., 2015, 87: 347 CrossRef ADS arXiv Google Scholar

[3] T?rm? P., Barnes W. L.. Rep. Prog. Phys., 2015, 78: 013901 CrossRef PubMed ADS arXiv Google Scholar

[4] Dovzhenko D. S., Ryabchuk S. V., Rakovich Y. P., Nabiev I. R.. Nanoscale, 2018, 10: 3589 CrossRef PubMed Google Scholar

[5] Walther H., Varcoe B. T. H., Englert B. G., Becker T.. Rep. Prog. Phys., 2006, 69: 1325 CrossRef ADS Google Scholar

[6] Lounis B., Orrit M.. Rep. Prog. Phys., 2005, 68: 1129 CrossRef ADS Google Scholar

[7] Chang D. E., Vuleti? V., Lukin M. D.. Nat. Photon., 2014, 8: 685 CrossRef ADS Google Scholar

[8] Kimble H. J.. Nature, 2008, 453: 1023 CrossRef PubMed ADS arXiv Google Scholar

[9] Sanvitto D., Kéna-Cohen S.. Nat. Mater., 2016, 15: 1061 CrossRef PubMed ADS Google Scholar

[10] Liu R., Zhou Z. K., Yu Y. C., Zhang T., Wang H., Liu G., Wei Y., Chen H., Wang X. H.. Phys. Rev. Lett., 2017, 118: 237401 CrossRef ADS Google Scholar

[11] Akahane Y., Asano T., Song B. S., Noda S.. Nature, 2003, 425: 944 CrossRef PubMed ADS Google Scholar

[12] Song B. S., Noda S., Asano T., Akahane Y.. Nat. Mater., 2005, 4: 207 CrossRef ADS Google Scholar

[13] J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 2008). Google Scholar

[14] Yoshie T., Scherer A., Hendrickson J., Khitrova G., Gibbs H. M., Rupper G., Ell C., Shchekin O. B., Deppe D. G.. Nature, 2004, 432: 200 CrossRef PubMed ADS Google Scholar

[15] Hennessy K., Badolato A., Winger M., Gerace D., Atatüre M., Gulde S., F?lt S., Hu E. L., Imamo?lu A.. Nature, 2007, 445: 896 CrossRef PubMed ADS Google Scholar

[16] Englund D., Faraon A., Fushman I., Stoltz N., Petroff P., Vu?kovi? J.. Nature, 2007, 450: 857 CrossRef ADS Google Scholar

[17] Faraon A., Fushman I., Englund D., Stoltz N., Petroff P., Vu?kovi? J.. Nat. Phys., 2008, 4: 859 CrossRef ADS arXiv Google Scholar

[18] Nomura M., Kumagai N., Iwamoto S., Ota Y., Arakawa Y.. Nat. Phys., 2010, 6: 279 CrossRef ADS arXiv Google Scholar

[19] Sato Y., Tanaka Y., Upham J., Takahashi Y., Asano T., Noda S.. Nat. Photon., 2012, 6: 56 CrossRef ADS Google Scholar

[20] Kim H., Shen T. C., Roy-Choudhury K., Solomon G. S., Waks E.. Phys. Rev. Lett., 2014, 113: 027403 CrossRef PubMed ADS arXiv Google Scholar

[21] Ota Y., Ohta R., Kumagai N., Iwamoto S., Arakawa Y.. Phys. Rev. Lett., 2015, 114: 143603 CrossRef PubMed ADS arXiv Google Scholar

[22] Sweeney T. M., Carter S. G., Bracker A. S., Kim M., Kim C. S., Yang L., Vora P. M., Brereton P. G., Cleveland E. R., Gammon D.. Nat. Photon., 2014, 8: 442 CrossRef ADS arXiv Google Scholar

[23] Lyasota A., Borghardt S., Jarlov C., Dwir B., Gallo P., Rudra A., Kapon E.. J. Cryst. Growth, 2015, 414: 192 CrossRef ADS Google Scholar

[24] Jarlov C., Wodey é., Lyasota A., Calic M., Gallo P., Dwir B., Rudra A., Kapon E.. Phys. Rev. Lett., 2016, 117: 076801 CrossRef PubMed ADS Google Scholar

[25] Lichtmannecker S., Florian M., Reichert T., Blauth M., Bichler M., Jahnke F., Finley J. J., Gies C., Kaniber M.. Sci. Rep., 2017, 7: 7420 CrossRef PubMed ADS arXiv Google Scholar

[26] Englund D., Shields B., Rivoire K., Hatami F., Vuc?kovic? J., Park H., Lukin M. D.. Nano Lett., 2010, 10: 3922 CrossRef PubMed ADS arXiv Google Scholar

[27] Faraon A., Santori C., Huang Z., Acosta V. M., Beausoleil R. G.. Phys. Rev. Lett., 2012, 109: 033604 CrossRef PubMed ADS arXiv Google Scholar

[28] Hausmann B. J. M., Shields B. J., Quan Q., Chu Y., de Leon N. P., Evans R., Burek M. J., Zibrov A. S., Markham M., Twitchen D. J., Park H., Lukin M. D., Lonc R M.. Nano Lett., 2013, 13: 5791 CrossRef PubMed ADS Google Scholar

[29] Wu S., Buckley S., Schaibley J. R., Feng L., Yan J., Mandrus D. G., Hatami F., Yao W., Vu?kovi? J., Majumdar A., Xu X.. Nature, 2015, 520: 69 CrossRef PubMed ADS Google Scholar

[30] Gopinath A., Miyazono E., Faraon A., Rothemund P. W. K.. Nature, 2016, 535: 401 CrossRef PubMed ADS Google Scholar

[31] Pyatkov F., Fütterling V., Khasminskaya S., Flavel B. S., Hennrich F., Kappes M. M., Krupke R., Pernice W. H. P.. Nat. Photon., 2016, 10: 420 CrossRef ADS Google Scholar

[32] Hwang M. S., Kim H. R., Kim K. H., Jeong K. Y., Park J. S., Choi J. H., Kang J. H., Lee J. M., Park W. I., Song J. H., Seo M. K., Park H. G.. Nano Lett., 2017, 17: 1892 CrossRef PubMed ADS Google Scholar

[33] Ota Y., Moriya R., Yabuki N., Arai M., Kakuda M., Iwamoto S., Machida T., Arakawa Y.. Appl. Phys. Lett., 2017, 110: 223105 CrossRef ADS Google Scholar

[34] Schlather A. E., Large N., Urban A. S., Nordlander P., Halas N. J.. Nano Lett., 2013, 13: 3281 CrossRef PubMed ADS Google Scholar

[35] Zengin G., Wers?ll M., Nilsson S., Antosiewicz T. J., K?ll M., Shegai T.. Phys. Rev. Lett., 2015, 114: 157401 CrossRef PubMed ADS arXiv Google Scholar

[36] Chen X., Chen Y. H., Qin J., Zhao D., Ding B., Blaikie R. J., Qiu M.. Nano Lett., 2017, 17: 3246 CrossRef PubMed ADS arXiv Google Scholar

[37] Garraway B. M.. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 2011, 369: 1137 CrossRef PubMed ADS Google Scholar

[38] Fan W. J., Hao Z. B., Li Z., Zhao Y. S., Luo Y.. J. Lightw. Technol., 2010, 28: 1455 CrossRef ADS Google Scholar

[39] Portalupi S. L., Galli M., Belotti M., Andreani L. C., Krauss T. F., O’Faolain L.. Phys. Rev. B, 2011, 84: 045423 CrossRef ADS Google Scholar

[40] Minkov M., Dharanipathy U. P., Houdré R., Savona V.. Opt. Express, 2013, 21: 28233 CrossRef ADS Google Scholar

[41] Hagino H., Takahashi Y., Tanaka Y., Asano T., Noda S.. Phys. Rev. B, 2009, 79: 085112 CrossRef ADS Google Scholar

[42] Asano T., Song B. S., Noda S.. Opt. Express, 2006, 14: 1996 CrossRef ADS Google Scholar

[43] Taguchi Y., Takahashi Y., Sato Y., Asano T., Noda S.. Opt. Express, 2011, 19: 11916 CrossRef ADS Google Scholar

[44] Benevides R., Santos F. G. S., Luiz G. O., Wiederhecker G. S., Alegre T. P. M.. Sci. Rep., 2017, 7: 2491 CrossRef PubMed ADS arXiv Google Scholar

[45] Akahane Y., Asano T., Song B. S., Noda S.. Opt. Express, 2005, 13: 1202 CrossRef ADS Google Scholar

[46] Takahashi Y., Hagino H., Tanaka Y., Song B. S., Asano T., Noda S.. Opt. Express, 2007, 15: 17206 CrossRef ADS Google Scholar

[47] Tanaka Y., Asano T., Noda S.. J. Lightwave Technol., 2008, 26: 1532 CrossRef Google Scholar

[48] Takahashi Y., Tanaka Y., Hagino H., Sugiya T., Sato Y., Asano T., Noda S.. Opt. Express, 2009, 17: 18093 CrossRef ADS Google Scholar

[49] Lai Y., Pirotta S., Urbinati G., Gerace D., Minkov M., Savona V., Badolato A., Galli M.. Appl. Phys. Lett., 2014, 104: 241101 CrossRef Google Scholar

[50] Wang D., Yu Z., Liu Y., Guo X., Shu C., Zhou S., Zhang J.. J. Opt., 2013, 15: 125102 CrossRef Google Scholar

[51] Minkov M., Savona V.. Sci. Rep., 2014, 4: 5124 CrossRef PubMed Google Scholar

[52] Anderson P. W.. Phys. Rev., 1958, 109: 1492 CrossRef Google Scholar

[53] Topolancik J., Ilic B., Vollmer F.. Phys. Rev. Lett., 2007, 99: 253901 CrossRef PubMed Google Scholar

[54] Lagendijk A., van Tiggelen B., Wiersma D. S.. Phys. Today, 2009, 62: 24 CrossRef ADS Google Scholar

[55] Wiersma D. S.. Nat. Photon., 2013, 7: 188 CrossRef ADS Google Scholar

[56] García P. D., Kir?ansk? G., Javadi A., Stobbe S., Lodahl P.. Phys. Rev. B, 2017, 96: 144201 CrossRef ADS arXiv Google Scholar

[57] Crane T., Trojak O. J., Vasco J. P., Hughes S., Sapienza L.. ACS Photon., 2017, 4: 2274 CrossRef Google Scholar

[58] Sapienza L., Thyrrestrup H., Stobbe S., Garcia P. D., Smolka S., Lodahl P.. Science, 2010, 327: 1352 CrossRef PubMed ADS arXiv Google Scholar

[59] Liu J., Garcia P. D., Ek S., Gregersen N., Suhr T., Schubert M., M?rk J., Stobbe S., Lodahl P.. Nat. Nanotech., 2014, 9: 285 CrossRef PubMed ADS Google Scholar

[60] García P. D., Lodahl P.. Annal. Phys., 2017, 529: 1600351 CrossRef ADS arXiv Google Scholar

[61] Thyrrestrup H., Smolka S., Sapienza L., Lodahl P.. Phys. Rev. Lett., 2012, 108: 113901 CrossRef PubMed ADS arXiv Google Scholar

[62] Gao J., Combrie S., Liang B., Schmitteckert P., Lehoucq G., Xavier S., Xu X. A., Busch K., Huffaker D. L., De Rossi A., Wong C. W.. Sci. Rep., 2013, 3: 1994 CrossRef PubMed ADS arXiv Google Scholar

[63] Vasco J. P., Hughes S.. Phys. Rev. B, 2017, 95: 224202 CrossRef ADS arXiv Google Scholar

[64] Vasco J. P., Hughes S.. ACS Photon., 2018, 5: 1262 CrossRef Google Scholar

[65] Wang X. H., Wang R., Gu B. Y., Yang G. Z.. Phys. Rev. Lett., 2002, 88: 093902 CrossRef PubMed ADS Google Scholar

[66] Wang X. H., Gu B. Y., Wang R., Xu H. Q.. Phys. Rev. Lett., 2003, 91: 113904 CrossRef ADS Google Scholar

[67] Chen G., Yu Y. C., Zhuo X. L., Huang Y. G., Jiang H., Liu J. F., Jin C. J., Wang X. H.. Phys. Rev. B, 2013, 87: 195138 CrossRef ADS Google Scholar

[68] E. M. Purcell, Phys. Rev. 69, 681 (1946). Google Scholar

[69] Chalcraft A. R. A., Lam S., O’Brien D., Krauss T. F., Sahin M., Szymanski D., Sanvitto D., Oulton R., Skolnick M. S., Fox A. M., Whittaker D. M., Liu H. Y., Hopkinson M.. Appl. Phys. Lett., 2007, 90: 241117 CrossRef ADS Google Scholar

[70] A. Taflove, and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (third edition) (Artech House, London, 2005). Google Scholar

[71] Chen G., Liu J. F., Jiang H., Zhuo X. L., Yu Y. C., Jin C., Wang X. H.. Nanoscale Res. Lett., 2013, 8: 187 CrossRef PubMed ADS Google Scholar

[72] Johnson S. G., Ibanescu M., Skorobogatiy M. A., Weisberg O., Joannopoulos J. D., Fink Y.. Phys. Rev. E, 2002, 65: 066611 CrossRef PubMed ADS Google Scholar

[73] Ramunno L., Hughes S.. Phys. Rev. B, 2009, 79: 161303 CrossRef ADS Google Scholar

[74] Badolato A., Hennessy K., Atatüre M., Dreiser J., Hu E., Petroff P. M., Imamoglu A.. Science, 2005, 308: 1158 CrossRef PubMed ADS Google Scholar

[75] Mann N., Javadi A., García P. D., Lodahl P., Hughes S.. Phys. Rev. A, 2015, 92: 023849 CrossRef ADS arXiv Google Scholar

  • Figure 1

    (Color online) (a), (b) Ey component of the normalized electric field E c(r) of the ideal PC L3 cavity mode on the (a) y =0 and (b) z =0 planes, respectively. The two horizontal black lines in (a) denote the top and bottom surfaces of the slab. The black circles in (b) denote the air holes. The white dot in (a) and the white arrow in (b) denote the location and orientation of the transition dipole moment of the quantum dot. (c) The perturbation of dielectric function δε(r ) on the z=0 plane between a disordered sample with disorder degree σ=0.002a and the ideal PC L3 cavity.

  • Figure 2

    (Color online) Statistical distribution (black dots), average value (red line) and standard deviation referred as spread (red error bar) of (a) resonant frequency ωc, (b) Q factor, (c) g factor and (d) vacuum Rabi splitting Ω in the SCS samples with different disorder degrees σ on resonance.

  • Figure 3

    LCS Γ (r 0,ω ), level shift Δ( r 0, ω) and evolution spectrum Ce (r 0,ω ) of the three representative SCS samples with disorder degree σ of (a) 0 , (b) 0.02a and (c) 0.04a on resonance.

  • Figure 4

    (Color online) Evolution spectrum Ce (r 0,ω ) of the three representative SCS samples with disorder degree σ of (a) 0, (b) 0.02a and (c) 0.04a, respectively, as a function of detuning between the varying transition frequency of the uncoupled quantum dot ω0 (denoted by the green line) and the constant resonant frequency of the uncoupled PC L3 cavity ωc (denoted by the yellow vertical line). The white horizontal line denotes the case on exact resonance, also shown in Figure3.

  • Figure 5

    Population P (r 0,t ) of the quantum dot in the excited state as a function of time in the three representative SCS samples with disorder degree σ of (a) 0, (b) 0.02a and (c) 0.04a on resonance.

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1