Superconductivity in potassium and ammonia co-intercalated FeSe$_{1-x}$Te$_x$

logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 62, Issue 4: 047411(2019) https://doi.org/10.1007/s11433-018-9302-6

Superconductivity in potassium and ammonia co-intercalated FeSe$_{1-x}$Te$_x$

More info
  • ReceivedJul 11, 2018
  • AcceptedSep 11, 2018
  • PublishedNov 30, 2018
PACS numbers

Abstract

The origin of the $\sim$40 and $\sim$30 K superconducting phases inthe metal-intercalated FeSe superconductors is still unclear. Wereport the synthesis ofK$_{0.3}$(NH$_3$)$_y$(FeSe$_{1-x}$Te$_x$)$_2$ andK$_{0.6}$(NH$_3$)$_y$(FeSe$_{1-x}$Te$_x$)$_2$ with $x$=0-0.6 byusing the liquid ammonia method at room temperature. Thesuperconducting transition temperature $T_{\rm~c}$ of the formerremains about 43 K for all the nominal Te content less than 0.3,while that of the latter is about 30 K and obviously decreases withTe doping. Superconductivity disappears for $x\geq$0.4 in bothsystems. Except for the different chemical pressure induced bysubstitution of Te for Se in both systems, we also observed distinctexternal pressure effect on superconductivity for both systems, withmuch more efficiency of suppressing $T_{\rm~c}$ by external pressurein the former system. These dramatic differences of both chemicaland external pressure effects on $T_\text{c}$ between the $\sim$30 and$\sim$40 K superconducting phases revealed that the existence of thetwo superconducting phases can be ascribed to the moderate andnegligible coupling between FeSe layers, respectively.


Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grants Nos. 11374252, 11604278, 11534010, and 91422303), the National Key Rrm D Program of the MOST of China (Grant No. 2017YFA0303001), the Hefei Science Center Chinese Academy Sciences (Grant No. 2016HSC-IU001), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB04040100).


References

[1] Kamihara Y., Watanabe T., Hirano M., Hosono H.. J. Am. Chem. Soc., 2008, 130: 3296-3297 CrossRef PubMed Google Scholar

[2] Chen X. H., Wu T., Wu G., Liu R. H., Chen H., Fang D. F.. Nature, 2008, 453: 761-762 CrossRef PubMed ADS arXiv Google Scholar

[3] Hsu F. C., Luo J. Y., Yeh K. W., Chen T. K., Huang T. W., Wu P. M., Lee Y. C., Huang Y. L., Chu Y. Y., Yan D. C., Wu M. K.. Proc. Natl. Acad. Sci. USA, 2008, 105: 14262-14264 CrossRef PubMed ADS Google Scholar

[4] Medvedev S., McQueen T. M., Troyan I. A., Palasyuk T., Eremets M. I., Cava R. J., Naghavi S., Casper F., Ksenofontov V., Wortmann G., Felser C.. Nat. Mater, 2009, 8: 630-633 CrossRef PubMed ADS arXiv Google Scholar

[5] Guo J., Jin S., Wang G., Wang S., Zhu K., Zhou T., He M., Chen X.. Phys. Rev. B, 2010, 82: 180520(R) CrossRef ADS arXiv Google Scholar

[6] Wang A. F., Ying J. J., Yan Y. J., Liu R. H., Luo X. G., Li Z. Y., Wang X. F., Zhang M., Ye G. J., Cheng P., Xiang Z. J., Chen X. H.. Phys. Rev. B, 2011, 83: 060512(R) CrossRef ADS arXiv Google Scholar

[7] Krzton-Maziopa A., Shermadini Z., Pomjakushina E., Pomjakushin V., Bendele M., Amato A., Khasanov R., Luetkens H., Conder K.. J. Phys.-Condens. Matter, 2011, 23: 052203 CrossRef PubMed ADS arXiv Google Scholar

[8] Fang M. H., Wang H. D., Dong C. H., Li Z. J., Feng C. M., Chen J., Yuan H. Q.. EPL, 2011, 94: 27009 CrossRef ADS Google Scholar

[9] Wang H. D., Dong C. H., Li Z. J., Mao Q. H., Zhu S. S., Feng C. M., Yuan H. Q., Fang M. H.. EPL, 2011, 93: 47004 CrossRef ADS arXiv Google Scholar

[10] Li W., Ding H., Deng P., Chang K., Song C., He K., Wang L., Ma X., Hu J. P., Chen X., Xue Q. K.. Nat. Phys, 2012, 8: 126-130 CrossRef ADS arXiv Google Scholar

[11] Bao W., Huang Q. Z., Chen G. F., Wang D. M., He J. B., Qiu Y. M.. Chin. Phys. Lett., 2011, 28: 086104 CrossRef ADS arXiv Google Scholar

[12] Bao W., Li G. N., Huang Q. Z., Chen G. F., He J. B., Wang D. M., Green M. A., Qiu Y. M., Luo J. L., Wu M. M.. Chin. Phys. Lett., 2013, 30: 027402 CrossRef ADS Google Scholar

[13] Sun L., Chen X. J., Guo J., Gao P., Huang Q. Z., Wang H., Fang M., Chen X., Chen G., Wu Q., Zhang C., Gu D., Dong X., Wang L., Yang K., Li A., Dai X., Mao H., Zhao Z.. Nature, 2012, 483: 67-69 CrossRef PubMed ADS arXiv Google Scholar

[14] Ying T., Chen X., Wang G., Jin S., Lai X., Zhou T., Zhang H., Shen S., Wang W.. J. Am. Chem. Soc., 2013, 135: 2951-2954 CrossRef PubMed Google Scholar

[15] Ying T. P., Chen X. L., Wang G., Jin S. F., Zhou T. T., Lai X. F., Zhang H., Wang W. Y.. T. P. Ying, X. L. Google Scholar

[16] Zhang A., Xia T., Liu K., Tong W., Yang Z., Zhang Q.. Sci Rep, 2013, 3: 1216 CrossRef PubMed ADS arXiv Google Scholar

[17] Scheidt E. W., Hathwar V. R., Schmitz D., Dunbar A., Scherer W., Mayr F., Tsurkan V., Deisenhofer J., Loidl A.. Eur. Phys. J. B, 2012, 85: 279 CrossRef ADS arXiv Google Scholar

[18] Krzton-Maziopa A., Pomjakushina E. V., Pomjakushin V. Y., von Rohr F., Schilling A., Conder K.. J. Phys.-Condens. Matter, 2012, 24: 382202 CrossRef PubMed ADS arXiv Google Scholar

[19] Burrard-Lucas M., Free D. G., Sedlmaier S. J., Wright J. D., Cassidy S. J., Hara Y., Corkett A. J., Lancaster T., Baker P. J., Blundell S. J., Clarke S. J.. Nat. Mater, 2013, 12: 15-19 CrossRef PubMed ADS arXiv Google Scholar

[20] Zheng L., Izumi M., Sakai Y., Eguchi R., Goto H., Takabayashi Y., Kambe T., Onji T., Araki S., Kobayashi T. C., Kim J., Fujiwara A., Kubozono Y.. Phys. Rev. B, 2013, 88: 094521 CrossRef ADS Google Scholar

[21] Hatakeda T., Noji T., Kawamata T., Kato M., Koike Y.. J. Phys. Soc. Jpn., 2013, 82: 123705 CrossRef ADS arXiv Google Scholar

[22] Yeh K. W., Huang T. W., Huang Y., Chen T. K., Hsu F. C., M. Wu P., Lee Y. C., Chu Y. Y., Chen C. L., Luo J. Y., Yan D. C., Wu M. K.. Europhys. Lett., 2008, 84: 37002 CrossRef ADS arXiv Google Scholar

[23] Mizuguchi Y., Tomioka F., Tsuda S., Yamaguchi T., Takano Y.. J. Phys. Soc. Jpn., 2009, 78: 074712 CrossRef ADS arXiv Google Scholar

[24] Fang M. H., Pham H. M., Qian B., Liu T. J., Vehstedt E. K., Liu Y., Spinu L., Mao Z. Q.. Phys. Rev. B, 2008, 78: 224503 CrossRef ADS arXiv Google Scholar

[25] Ozaki T., Takeya H., Deguchi K., Demura S., Hara H., Watanabe T., James Denholme S., Okazaki H., Fujioka M., Yokota Y., Yamaguchi T., Takano Y.. Supercond. Sci. Technol., 2013, 26: 055002 CrossRef ADS arXiv Google Scholar

[26] Wang Z., Cai Y., Wang Z. W., Sun Z. A., Yang H. X., Tian H. F., Ma C., Zhang B., Li J. Q.. EPL, 2013, 102: 37010 CrossRef ADS Google Scholar

[27] Ying J. J., Wang X. F., Luo X. G., Li Z. Y., Yan Y. J., Zhang M., Wang A. F., Cheng P., Ye G. J., Xiang Z. J., Liu R. H., Chen X. H.. New J. Phys., 2011, 13: 033008 CrossRef ADS arXiv Google Scholar

[28] Lu X. F., Wang N. Z., Zhang G. H., Luo X. G., Ma Z. M., Lei B., Huang F. Q., Chen X. H.. Phys. Rev. B, 2014, 89: 020507 CrossRef ADS arXiv Google Scholar

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1