Solid-state quantum electrodynamics (QED) not only demonstrates basic principles of quantum physics, but also provides key support to future quantum technologies. However, the non-modifiability of the fabricated solid-state QED systems limits their flexibility and versatility in manipulating light-matter interaction, and severely hinders their practical applications. Here, we put forward an approach of multi-dimensionally manipulating light-matter interaction to realize a dynamically tunable multifunctional QED platform by combining the local light-induced refractive index modulation (LRIM) and strong dispersion characteristic of the photonic crystal (PC) waveguide. We demonstrate three significant functions of the platform as examples: switch control between weak and strong couplings on demand, distant quantum entanglement, and a directional single photon source with high brightness and efficiency. These functions are strongly robust against positioning error of the quantum emitter, and can be facilely realized only by local LRIM on one PC waveguide. Our work paves a new way for the realization of multifunctional quantum devices.
the National Key R&D Program of China(Grant,No.,2016YFA0301300)
the National Natural Science Foundation of China(Grant,Nos.,11334015,91750207,11761141015,11504058,11874438)
the Natural Science Foundation of Guangdong(Grant,Nos.,2016A030312012,2015A030310213)
the Guangzhou Science and Technology Project(Grant,No.,201607020023)
and the Three Big Constructions—Supercomputing Application Cultivation Projects Sponsored by National Supercomputer Center in Guangzhou.
This work was supported by the National Key R&D Program of China (Grant No. 2016YFA0301300), the National Natural Science Foundation of China (Grant Nos. 11334015, 91750207, 11761141015, 11504058, and 11874438), the Natural Science Foundation of Guangdong (Grant Nos. 2016A030312012, 2015A030310213, and 2018A030313722), the Guangzhou Science and Technology Project (Grant No. 201607020023), and the National Supercomputer Center in Guangzhou.
[1]
D. Bouwmeester, A. K. Ekert, and A. Zeilinger,
[2] Buluta I., Ashhab S., Nori F.. Rep. Prog. Phys., 2011, 74: 104401 CrossRef ADS arXiv Google Scholar
[3] Ladd T. D., Jelezko F., Laflamme R., Nakamura Y., Monroe C., O’Brien J. L.. Nature, 2010, 464: 45 CrossRef PubMed ADS arXiv Google Scholar
[4] Pelton M.. Nat. Photon., 2015, 9: 427 CrossRef ADS Google Scholar
[5] David A., Benisty H., Weisbuch C.. Rep. Prog. Phys., 2012, 75: 126501 CrossRef PubMed ADS Google Scholar
[6] Aharonovich I., Englund D., Toth M.. Nat. Photon., 2016, 10: 631 CrossRef ADS Google Scholar
[7] Daveau R. S., Balram K. C., Pregnolato T., Liu J., Lee E. H., Song J. D., Verma V., Mirin R., Nam S. W., Midolo L., Stobbe S., Srinivasan K., Lodahl P.. Optica, 2017, 4: 178 CrossRef Google Scholar
[8] Arcari M., S?llner I., Javadi A., Lindskov Hansen S., Mahmoodian S., Liu J., Thyrrestrup H., Lee E. H., Song J. D., Stobbe S., Lodahl P.. Phys. Rev. Lett., 2014, 113: 093603 CrossRef PubMed ADS arXiv Google Scholar
[9] Bose R., Cai T., Choudhury K. R., Solomon G. S., Waks E.. Nat. Photon., 2014, 8: 858 CrossRef ADS arXiv Google Scholar
[10] Zhang Q., Lou M., Li X., Reno J. L., Pan W., Watson J. D., Manfra M. J., Kono J.. Nat. Phys., 2016, 12: 1005 CrossRef ADS arXiv Google Scholar
[11] Dovzhenko D. S., Ryabchuk S. V., Rakovich Y. P., Nabiev I. R., Chen G. Y., Liu J. F., Yu Y. C., Liu R. M., Zhu G. X., Chen Y. Z., Chen Z. X., Wang X. H., Chen G., Yu Y. C., Zhuo X. L., Huang Y. G., Jiang H., Liu J. F., Jin C. J., Wang X. H.. Nanoscale, 2018, 10: 3589 CrossRef PubMed Google Scholar
[12] Hwang M. S., Kim H. R., Kim K. H., Jeong K. Y., Park J. S., Choi J. H., Kang J. H., Lee J. M., Park W. I., Song J. H., Seo M. K., Park H. G.. Nano Lett., 2017, 17: 1892 CrossRef PubMed ADS Google Scholar
[13] Xue W., Yu Y., Ottaviano L., Chen Y., Semenova E., Yvind K., Mork J.. Phys. Rev. Lett., 2016, 116: 063901 CrossRef PubMed ADS arXiv Google Scholar
[14] Yu Y., Xue W., Semenova E., Yvind K., Mork J.. Nat. Photon., 2016, 11: 81 CrossRef ADS arXiv Google Scholar
[15] Hughes S., Agarwal G. S.. Phys. Rev. Lett., 2017, 118: 063601 CrossRef PubMed ADS arXiv Google Scholar
[16] Vasco J. P., Gerace D., Guimar?es P. S. S., Santos M. F.. Phys. Rev. B, 2016, 94: 165302 CrossRef ADS arXiv Google Scholar
[17] Flayac H., Minkov M., Savona V.. Phys. Rev. A, 2015, 92: 043812 CrossRef ADS arXiv Google Scholar
[18] Konoike R., Nakagawa H., Nakadai M., Asano T., Tanaka Y., Noda S.. Sci. Adv., 2016, 2: e1501690 CrossRef PubMed ADS Google Scholar
[19]
G. Calajò, L. Rizzuto, and R. Passante,
[20] Jin C. Y., Johne R., Swinkels M. Y., Hoang T. B., Midolo L., van Veldhoven P. J., Fiore A.. Nat. Nanotech., 2014, 9: 886 CrossRef PubMed ADS arXiv Google Scholar
[21] Johne R., Schutjens R., Fattah poor S., Jin C. Y., Fiore A.. Phys. Rev. A, 2015, 91: 063807 CrossRef ADS arXiv Google Scholar
[22] Pellegrino D., Pagliano F., Genco A., Petruzzella M., van Otten F. W., Fiore A.. Appl. Phys. Lett., 2018, 112: 161110 CrossRef ADS Google Scholar
[23] Konoike R., Sato Y., Tanaka Y., Asano T., Noda S.. Phys. Rev. B, 2013, 87: 165138 CrossRef ADS Google Scholar
[24] H?fer B., Zhang J., Wildmann J., Zallo E., Trotta R., Ding F., Rastelli A., Schmidt O. G.. Appl. Phys. Lett., 2017, 110: 151102 CrossRef ADS Google Scholar
[25] Lu Y. J., Sokhoyan R., Cheng W. H., Kafaie Shirmanesh G., Davoyan A. R., Pala R. A., Thyagarajan K., Atwater H. A.. Nat. Commun., 2017, 8: 1631 CrossRef PubMed ADS Google Scholar
[26] Pagliano F., Cho Y. J., Xia T., van Otten F., Johne R., Fiore A.. Nat. Commun., 2014, 5: 5786 CrossRef PubMed ADS arXiv Google Scholar
[27] Kapfinger S., Reichert T., Lichtmannecker S., Müller K., Finley J. J., Wixforth A., Kaniber M., Krenner H. J.. Nat. Commun., 2015, 6: 8540 CrossRef PubMed ADS arXiv Google Scholar
[28] Wei? M., Kapfinger S., Reichert T., Finley J. J., Wixforth A., Kaniber M., Krenner H. J.. Appl. Phys. Lett., 2016, 109: 033105 CrossRef ADS arXiv Google Scholar
[29] Yan C. H., Wei L. F.. Phys. Rev. A, 2016, 94: 053816 CrossRef ADS Google Scholar
[30]
M. W. Lee, C. Grillet, S. Tomljenovic-Hanic, C. L. C. Smith, C. Monat, D. Freeman, S. Madden, B. Luther-Davies, and B. J. Eggleton, in
[31] Notomi M., Taniyama H.. Opt. Express, 2008, 16: 18657 CrossRef ADS Google Scholar
[32] Tomljenovic-Hanic S., de Sterke C. M.. Opt. Express, 2010, 18: 21397 CrossRef PubMed ADS Google Scholar
[33] Lee M. W., Grillet C., Tomljenovic-Hanic S., M?gi E. C., Moss D. J., Eggleton B. J., Gai X., Madden S., Choi D. Y., Bulla D. A. P., Luther-Davies B.. Opt. Lett., 2009, 34: 3671 CrossRef PubMed ADS Google Scholar
[34] Tomljenovic-Hanic S., Steel M. J., Martijn de Sterke C., Moss D. J.. Opt. Lett., 2007, 32: 542 CrossRef ADS Google Scholar
[35] Tanaka Y., Asano T., Noda S.. J. Lightwave Technol., 2008, 26: 1532 CrossRef ADS Google Scholar
[36] Dung H. T., Kn?ll L., Welsch D. G.. Phys. Rev. A, 2000, 62: 053804 CrossRef ADS Google Scholar
[37] Dung H. T., Kn?ll L., Welsch D. G.. Phys. Rev. A, 2002, 65: 043813 CrossRef ADS Google Scholar
[38] Dung H. T., Kn?ll L., Welsch D. G.. Phys. Rev. A, 2002, 66: 063810 CrossRef ADS Google Scholar
[39] Akahane Y., Asano T., Song B. S., Noda S.. Nature, 2003, 425: 944 CrossRef PubMed ADS Google Scholar
[40] Yoshie T., Scherer A., Hendrickson J., Khitrova G., Gibbs H. M., Rupper G., Ell C., Shchekin O. B., Deppe D. G.. Nature, 2004, 432: 200 CrossRef PubMed ADS Google Scholar
[41] Sprik R., van Tiggelen B. A., Lagendijk A.. Europhys. Lett., 1996, 35: 265 CrossRef ADS Google Scholar
[42] John S., Busch K.. J. Lightwave Technol., 1999, 17: 1931 CrossRef ADS Google Scholar
Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有
京ICP备18024590号-1