References
[1]
Ozkan
S,
Nguyen
NT,
Hwang
I, et al.
Highly conducting spaced TiO2 nanotubes enable defined conformal coating with nanocrystalline Nb2O5 and high performance supercapacitor applications.
Small,
2017, 13: 1603821
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Highly conducting spaced TiO2 nanotubes enable defined conformal coating with nanocrystalline Nb2O5 and high performance supercapacitor applications&author=Ozkan S&author=Nguyen NT&author=Hwang I&publication_year=2017&journal=Small&volume=13&pages=1603821
[2]
Shi
P,
Li
L,
Hua
L, et al.
Design of amorphous manganese oxide@multiwalled carbon nanotube fiber for robust solid-state supercapacitor.
ACS Nano,
2017, 11: 444-452
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Design of amorphous manganese oxide@multiwalled carbon nanotube fiber for robust solid-state supercapacitor&author=Shi P&author=Li L&author=Hua L&publication_year=2017&journal=ACS Nano&volume=11&pages=444-452
[3]
Wang
S,
Liu
N,
Su
J, et al.
Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs.
ACS Nano,
2017, 11: 2066-2074
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs&author=Wang S&author=Liu N&author=Su J&publication_year=2017&journal=ACS Nano&volume=11&pages=2066-2074
[4]
González-Gaitán
C,
Ruiz-Rosas
R,
Nishihara
H, et al.
Successful functionalization of superporous zeolite templated carbon using aminobenzene acids and electrochemical methods.
Carbon,
2016, 99: 157-166
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Successful functionalization of superporous zeolite templated carbon using aminobenzene acids and electrochemical methods&author=González-Gaitán C&author=Ruiz-Rosas R&author=Nishihara H&publication_year=2016&journal=Carbon&volume=99&pages=157-166
[5]
Li
X,
Zhao
Y,
Bai
Y, et al.
A non-woven network of porous nitrogen-doping carbon nanofibers as a binder-free electrode for supercapacitors.
Electrochim Acta,
2017, 230: 445-453
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A non-woven network of porous nitrogen-doping carbon nanofibers as a binder-free electrode for supercapacitors&author=Li X&author=Zhao Y&author=Bai Y&publication_year=2017&journal=Electrochim Acta&volume=230&pages=445-453
[6]
Dong
L,
Xu
C,
Li
Y, et al.
Flexible electrodes and supercapacitors for wearable energy storage: a review by category.
J Mater Chem A,
2016, 4: 4659-4685
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Flexible electrodes and supercapacitors for wearable energy storage: a review by category&author=Dong L&author=Xu C&author=Li Y&publication_year=2016&journal=J Mater Chem A&volume=4&pages=4659-4685
[7]
Huang
C,
Zhang
J,
Young
NP, et al.
Solid-state supercapacitors with rationally designed heterogeneous electrodes fabricated by large area spray processing for wearable energy storage applications.
Sci Rep,
2016, 6: 25684
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Solid-state supercapacitors with rationally designed heterogeneous electrodes fabricated by large area spray processing for wearable energy storage applications&author=Huang C&author=Zhang J&author=Young NP&publication_year=2016&journal=Sci Rep&volume=6&pages=25684
[8]
Wang
Y,
Shi
Z,
Huang
Y, et al.
Supercapacitor devices based on graphene materials.
J Phys Chem C,
2009, 113: 13103-13107
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Supercapacitor devices based on graphene materials&author=Wang Y&author=Shi Z&author=Huang Y&publication_year=2009&journal=J Phys Chem C&volume=113&pages=13103-13107
[9]
Deka
BK,
Hazarika
A,
Kim
J, et al.
Recent development and challenges of multifunctional structural supercapacitors for automotive industries.
Int J Energy Res,
2017, 41: 1397-1411
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Recent development and challenges of multifunctional structural supercapacitors for automotive industries&author=Deka BK&author=Hazarika A&author=Kim J&publication_year=2017&journal=Int J Energy Res&volume=41&pages=1397-1411
[10]
González
A,
Goikolea
E,
Barrena
JA, et al.
Review on supercapacitors: technologies and materials.
Renew Sustain Energy Rev,
2016, 58: 1189-1206
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Review on supercapacitors: technologies and materials&author=González A&author=Goikolea E&author=Barrena JA&publication_year=2016&journal=Renew Sustain Energy Rev&volume=58&pages=1189-1206
[11]
Ma
W,
Chen
S,
Yang
S, et al.
Hierarchical MnO2 nanowire/graphene hybrid fibers with excellent electrochemical performance for flexible solid-state supercapacitors.
J Power Sources,
2016, 306: 481-488
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hierarchical MnO2 nanowire/graphene hybrid fibers with excellent electrochemical performance for flexible solid-state supercapacitors&author=Ma W&author=Chen S&author=Yang S&publication_year=2016&journal=J Power Sources&volume=306&pages=481-488
[12]
Wang
D,
Fang
G,
Xue
T, et al.
A melt route for the synthesis of activated carbon derived from carton box for high performance symmetric supercapacitor applications.
J Power Sources,
2016, 307: 401-409
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A melt route for the synthesis of activated carbon derived from carton box for high performance symmetric supercapacitor applications&author=Wang D&author=Fang G&author=Xue T&publication_year=2016&journal=J Power Sources&volume=307&pages=401-409
[13]
Wu
S,
Zhu
Y.
Highly densified carbon electrode materials towards practical supercapacitor devices.
Sci China Mater,
2017, 60: 25-38
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Highly densified carbon electrode materials towards practical supercapacitor devices&author=Wu S&author=Zhu Y&publication_year=2017&journal=Sci China Mater&volume=60&pages=25-38
[14]
Zheng
M,
Xiao
X,
Li
L, et al.
Hierarchically nanostructured transition metal oxides for supercapacitors.
Sci China Mater,
2017,
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hierarchically nanostructured transition metal oxides for supercapacitors&author=Zheng M&author=Xiao X&author=Li L&publication_year=2017&journal=Sci China Mater&
[15]
Zhang
Y,
Zhen
Z,
Zhang
Z, et al.
In-situ synthesis of carbon nanotube/graphene composite sponge and its application as compressible supercapacitor electrode.
Electrochim Acta,
2015, 157: 134-141
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=In-situ synthesis of carbon nanotube/graphene composite sponge and its application as compressible supercapacitor electrode&author=Zhang Y&author=Zhen Z&author=Zhang Z&publication_year=2015&journal=Electrochim Acta&volume=157&pages=134-141
[16]
Sahu
V,
Shekhar
S,
Sharma
RK, et al.
Ultrahigh performance supercapacitor from lacey reduced graphene oxide nanoribbons.
ACS Appl Mater Interfaces,
2015, 7: 3110-3116
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ultrahigh performance supercapacitor from lacey reduced graphene oxide nanoribbons&author=Sahu V&author=Shekhar S&author=Sharma RK&publication_year=2015&journal=ACS Appl Mater Interfaces&volume=7&pages=3110-3116
[17]
Wang
JG,
Kang
F,
Wei
B.
Engineering of MnO2-based nanocomposites for high-performance supercapacitors.
Prog Mater Sci,
2015, 74: 51-124
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Engineering of MnO2-based nanocomposites for high-performance supercapacitors&author=Wang JG&author=Kang F&author=Wei B&publication_year=2015&journal=Prog Mater Sci&volume=74&pages=51-124
[18]
Li
L,
Song
H,
Zhang
Q, et al.
Effect of compounding process on the structure and electrochemical properties of ordered mesoporous carbon/polyaniline composites as electrodes for supercapacitors.
J Power Sources,
2009, 187: 268-274
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Effect of compounding process on the structure and electrochemical properties of ordered mesoporous carbon/polyaniline composites as electrodes for supercapacitors&author=Li L&author=Song H&author=Zhang Q&publication_year=2009&journal=J Power Sources&volume=187&pages=268-274
[19]
Liu
M,
Du
Y,
Miao
YE, et al.
Anisotropic conductive films based on highly aligned polyimide fibers containing hybrid materials of graphene nanoribbons and carbon nanotubes.
Nanoscale,
2015, 7: 1037-1046
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Anisotropic conductive films based on highly aligned polyimide fibers containing hybrid materials of graphene nanoribbons and carbon nanotubes&author=Liu M&author=Du Y&author=Miao YE&publication_year=2015&journal=Nanoscale&volume=7&pages=1037-1046
[20]
Wang
K,
Zhang
X,
Sun
X, et al.
Conducting polymer hydrogel materials for high-performance flexible solid-state supercapacitors.
Sci China Mater,
2016, 59: 412-420
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Conducting polymer hydrogel materials for high-performance flexible solid-state supercapacitors&author=Wang K&author=Zhang X&author=Sun X&publication_year=2016&journal=Sci China Mater&volume=59&pages=412-420
[21]
Belin
T,
Epron
F.
Characterization methods of carbon nanotubes: a review.
Mater Sci Eng-B,
2005, 119: 105-118
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Characterization methods of carbon nanotubes: a review&author=Belin T&author=Epron F&publication_year=2005&journal=Mater Sci Eng-B&volume=119&pages=105-118
[22]
He
S,
Chen
W.
Application of biomass-derived flexible carbon cloth coated with MnO2 nanosheets in supercapacitors.
J Power Sources,
2015, 294: 150-158
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Application of biomass-derived flexible carbon cloth coated with MnO2 nanosheets in supercapacitors&author=He S&author=Chen W&publication_year=2015&journal=J Power Sources&volume=294&pages=150-158
[23]
Dhawale
DS,
Kim
S,
Park
DH, et al.
Hierarchically ordered porous CoOOH thin-film electrodes for high-performance supercapacitors.
ChemElectroChem,
2015, 2: 497-502
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hierarchically ordered porous CoOOH thin-film electrodes for high-performance supercapacitors&author=Dhawale DS&author=Kim S&author=Park DH&publication_year=2015&journal=ChemElectroChem&volume=2&pages=497-502
[24]
Wu
Q,
Xu
Y,
Yao
Z, et al.
Supercapacitors based on flexible graphene/polyaniline nanofiber composite films.
ACS Nano,
2010, 4: 1963-1970
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Supercapacitors based on flexible graphene/polyaniline nanofiber composite films&author=Wu Q&author=Xu Y&author=Yao Z&publication_year=2010&journal=ACS Nano&volume=4&pages=1963-1970
[25]
Li
ZF,
Zhang
H,
Liu
Q, et al.
Fabrication of high-surface-area graphene/polyaniline nanocomposites and their application in supercapacitors.
ACS Appl Mater Interfaces,
2013, 5: 2685-2691
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fabrication of high-surface-area graphene/polyaniline nanocomposites and their application in supercapacitors&author=Li ZF&author=Zhang H&author=Liu Q&publication_year=2013&journal=ACS Appl Mater Interfaces&volume=5&pages=2685-2691
[26]
Wang
T,
Zhang
SL,
Wang
HX.
Binary NiCu layered double hydroxide nanosheets for enhanced energy storage performance as supercapacitor electrode.
Sci China Mater,
2017, : doi: 10.1007/s40843-017-9131-7
Google Scholar
http://scholar.google.com/scholar_lookup?title=Binary NiCu layered double hydroxide nanosheets for enhanced energy storage performance as supercapacitor electrode&author=Wang T&author=Zhang SL&author=Wang HX&publication_year=2017&journal=Sci China Mater&pages=doi: 10.1007/s40843-017-9131-7
[27]
Nie
Z,
Wang
Y,
Zhang
Y, et al.
Multi-shelled α-Fe2O3 microspheres for high-rate supercapacitors.
Sci China Mater,
2016, 59: 247-253
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multi-shelled α-Fe2O3 microspheres for high-rate supercapacitors&author=Nie Z&author=Wang Y&author=Zhang Y&publication_year=2016&journal=Sci China Mater&volume=59&pages=247-253
[28]
Wang
R,
Luo
Y,
Chen
Z, et al.
The effect of loading density of nickel-cobalt sulfide arrays on their cyclic stability and rate performance for supercapacitors.
Sci China Mater,
2016, 59: 629-638
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The effect of loading density of nickel-cobalt sulfide arrays on their cyclic stability and rate performance for supercapacitors&author=Wang R&author=Luo Y&author=Chen Z&publication_year=2016&journal=Sci China Mater&volume=59&pages=629-638
[29]
Tran
C,
Kalra
V.
Co-continuous nanoscale assembly of nafion-polyacrylonitrile blends within nanofibers: a facile route to fabrication of porous nanofibers.
Soft Matter,
2013, 9: 846-852
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Co-continuous nanoscale assembly of nafion-polyacrylonitrile blends within nanofibers: a facile route to fabrication of porous nanofibers&author=Tran C&author=Kalra V&publication_year=2013&journal=Soft Matter&volume=9&pages=846-852
[30]
Choi
KM,
Jeong
HM,
Park
JH, et al.
Supercapacitors of nanocrystalline metal-organic frameworks.
ACS Nano,
2014, 8: 7451-7457
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Supercapacitors of nanocrystalline metal-organic frameworks&author=Choi KM&author=Jeong HM&author=Park JH&publication_year=2014&journal=ACS Nano&volume=8&pages=7451-7457
[31]
Sun
L,
Campbell
MG,
Dinc?
M.
Electrically conductive porous metal-organic frameworks.
Angew Chem Int Ed,
2016, 55: 3566-3579
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Electrically conductive porous metal-organic frameworks&author=Sun L&author=Campbell MG&author=Dinc? M&publication_year=2016&journal=Angew Chem Int Ed&volume=55&pages=3566-3579
[32]
Zhang
YZ,
Cheng
T,
Wang
Y, et al.
A simple approach to boost capacitance: flexible supercapacitors based on manganese oxides@MOFs via chemically induced in situ self-transformation.
Adv Mater,
2016, 28: 5242-5248
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=A simple approach to boost capacitance: flexible supercapacitors based on manganese oxides@MOFs via chemically induced in situ self-transformation&author=Zhang YZ&author=Cheng T&author=Wang Y&publication_year=2016&journal=Adv Mater&volume=28&pages=5242-5248
[33]
Stallinga
P.
Electronic transport in organic materials: comparison of band theory with percolation/(variable range) hopping theory.
Adv Mater,
2011, 23: 3356-3362
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Electronic transport in organic materials: comparison of band theory with percolation/(variable range) hopping theory&author=Stallinga P&publication_year=2011&journal=Adv Mater&volume=23&pages=3356-3362
[34]
Zhang
Z,
Yoshikawa
H,
Awaga
K.
Discovery of a “bipolar charging” mechanism in the solid-state electrochemical process of a flexible metal-organic framework.
Chem Mater,
2016, 28: 1298-1303
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Discovery of a “bipolar charging” mechanism in the solid-state electrochemical process of a flexible metal-organic framework&author=Zhang Z&author=Yoshikawa H&author=Awaga K&publication_year=2016&journal=Chem Mater&volume=28&pages=1298-1303
[35]
Wei
T,
Zhang
M,
Wu
P, et al.
POM-based metal-organic framework/reduced graphene oxide nanocomposites with hybrid behavior of battery-supercapacitor for superior lithium storage.
Nano Energy,
2017, 34: 205-214
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=POM-based metal-organic framework/reduced graphene oxide nanocomposites with hybrid behavior of battery-supercapacitor for superior lithium storage&author=Wei T&author=Zhang M&author=Wu P&publication_year=2017&journal=Nano Energy&volume=34&pages=205-214
[36]
Guan
C,
Zhao
W,
Hu
Y, et al.
Cobalt oxide and N-doped carbon nanosheets derived from a single two-dimensional metal-organic framework precursor and their application in flexible asymmetric supercapacitors.
Nanoscale Horiz,
2017, 2: 99-105
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cobalt oxide and N-doped carbon nanosheets derived from a single two-dimensional metal-organic framework precursor and their application in flexible asymmetric supercapacitors&author=Guan C&author=Zhao W&author=Hu Y&publication_year=2017&journal=Nanoscale Horiz&volume=2&pages=99-105
[37]
Wang
H,
Gao
Q,
Hu
J.
Asymmetric capacitor based on superior porous Ni–Zn–Co oxide/hydroxide and carbon electrodes.
J Power Sources,
2010, 195: 3017-3024
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Asymmetric capacitor based on superior porous Ni–Zn–Co oxide/hydroxide and carbon electrodes&author=Wang H&author=Gao Q&author=Hu J&publication_year=2010&journal=J Power Sources&volume=195&pages=3017-3024
[38]
Yan
X,
Li
X,
Yan
Z, et al.
Porous carbons prepared by direct carbonization of MOFs for supercapacitors.
Appl Surf Sci,
2014, 308: 306-310
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Porous carbons prepared by direct carbonization of MOFs for supercapacitors&author=Yan X&author=Li X&author=Yan Z&publication_year=2014&journal=Appl Surf Sci&volume=308&pages=306-310
[39]
Ding
B,
Wang
J,
Chang
Z, et al.
Self-sacrificial template-directed synthesis of metal-organic framework-derived porous carbon for energy-storage devices.
ChemElectroChem,
2016, 3: 668-674
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Self-sacrificial template-directed synthesis of metal-organic framework-derived porous carbon for energy-storage devices&author=Ding B&author=Wang J&author=Chang Z&publication_year=2016&journal=ChemElectroChem&volume=3&pages=668-674
[40]
Mao
ML,
Sun
LX,
Xu
F.
Metal-organic frameworks/carboxyl graphene derived porous carbon as a promising supercapacitor electrode material.
Key Eng Mater,
2017, 727: 756-763
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Metal-organic frameworks/carboxyl graphene derived porous carbon as a promising supercapacitor electrode material&author=Mao ML&author=Sun LX&author=Xu F&publication_year=2017&journal=Key Eng Mater&volume=727&pages=756-763
[41]
Yi
H,
Wang
H,
Jing
Y, et al.
Asymmetric supercapacitors based on carbon nanotubes@NiO ultrathin nanosheets core-shell composites and MOF-derived porous carbon polyhedrons with super-long cycle life.
J Power Sources,
2015, 285: 281-290
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Asymmetric supercapacitors based on carbon nanotubes@NiO ultrathin nanosheets core-shell composites and MOF-derived porous carbon polyhedrons with super-long cycle life&author=Yi H&author=Wang H&author=Jing Y&publication_year=2015&journal=J Power Sources&volume=285&pages=281-290
[42]
Meng
JP,
Gong
Y,
Lin
Q, et al.
Metal-organic frameworks based on rigid ligands as separator membranes in supercapacitor.
Dalton Trans,
2015, 44: 5407-5416
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Metal-organic frameworks based on rigid ligands as separator membranes in supercapacitor&author=Meng JP&author=Gong Y&author=Lin Q&publication_year=2015&journal=Dalton Trans&volume=44&pages=5407-5416
[43]
Park
SS,
Hontz
ER,
Sun
L, et al.
Cation-dependent intrinsic electrical conductivity in isostructural tetrathiafulvalene-based microporous metal-organic frameworks.
J Am Chem Soc,
2015, 137: 1774-1777
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cation-dependent intrinsic electrical conductivity in isostructural tetrathiafulvalene-based microporous metal-organic frameworks&author=Park SS&author=Hontz ER&author=Sun L&publication_year=2015&journal=J Am Chem Soc&volume=137&pages=1774-1777
[44]
Ye
G,
Gong
Y,
Keyshar
K, et al.
3D reduced graphene oxide coated V2O5 nanoribbon scaffolds for high-capacity supercapacitor electrodes.
Part Part Syst Charact,
2015, 32: 817-821
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=3D reduced graphene oxide coated V2O5 nanoribbon scaffolds for high-capacity supercapacitor electrodes&author=Ye G&author=Gong Y&author=Keyshar K&publication_year=2015&journal=Part Part Syst Charact&volume=32&pages=817-821
[45]
Lee
DY,
Yoon
SJ,
Shrestha
NK, et al.
Unusual energy storage and charge retention in Co-based metal-organic-frameworks.
Micropor Mesopor Mater,
2012, 153: 163-165
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Unusual energy storage and charge retention in Co-based metal-organic-frameworks&author=Lee DY&author=Yoon SJ&author=Shrestha NK&publication_year=2012&journal=Micropor Mesopor Mater&volume=153&pages=163-165
[46]
Kandalkar
SG,
Dhawale
DS,
Kim
CK, et al.
Chemical synthesis of cobalt oxide thin film electrode for supercapacitor application.
Synth Met,
2010, 160: 1299-1302
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chemical synthesis of cobalt oxide thin film electrode for supercapacitor application&author=Kandalkar SG&author=Dhawale DS&author=Kim CK&publication_year=2010&journal=Synth Met&volume=160&pages=1299-1302
[47]
Zhang F, Hao L, Zhang LJ, et al. Solid-state thermolysis preparation of Co3O4 nano/micro superstructures from metal-organic framework for supercapacitors. Int J Electrochem Sci, 2011, 6: 2943–2954.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhang F, Hao L, Zhang LJ, et al. Solid-state thermolysis preparation of Co3O4 nano/micro superstructures from metal-organic framework for supercapacitors. Int J Electrochem Sci, 2011, 6: 2943–2954&
[48]
Lee
DY,
Shinde
DV,
Kim
EK, et al.
Supercapacitive property of metal-organic-frameworks with different pore dimensions and morphology.
Micropor Mesopor Mater,
2013, 171: 53-57
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Supercapacitive property of metal-organic-frameworks with different pore dimensions and morphology&author=Lee DY&author=Shinde DV&author=Kim EK&publication_year=2013&journal=Micropor Mesopor Mater&volume=171&pages=53-57
[49]
Miles
DO,
Jiang
D,
Burrows
AD, et al.
Conformal transformation of [Co(bdc)(DMF)] (Co-MOF-71, bdc =1,4-benzenedicarboxylate, DMF=N,N-dimethylformamide) into porous electrochemically active cobalt hydroxide.
Electrochem Commun,
2013, 27: 9-13
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Conformal transformation of [Co(bdc)(DMF)] (Co-MOF-71, bdc =1,4-benzenedicarboxylate, DMF=N,N-dimethylformamide) into porous electrochemically active cobalt hydroxide&author=Miles DO&author=Jiang D&author=Burrows AD&publication_year=2013&journal=Electrochem Commun&volume=27&pages=9-13
[50]
Yang
J,
Xiong
P,
Zheng
C, et al.
Metal-organic frameworks: a new promising class of materials for a high performance supercapacitor electrode.
J Mater Chem A,
2014, 2: 16640-16644
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Metal-organic frameworks: a new promising class of materials for a high performance supercapacitor electrode&author=Yang J&author=Xiong P&author=Zheng C&publication_year=2014&journal=J Mater Chem A&volume=2&pages=16640-16644
[51]
Yan
Y,
Gu
P,
Zheng
S, et al.
Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors.
J Mater Chem A,
2016, 4: 19078-19085
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors&author=Yan Y&author=Gu P&author=Zheng S&publication_year=2016&journal=J Mater Chem A&volume=4&pages=19078-19085
[52]
Lai
F,
Huang
Y,
Miao
YE, et al.
Controllable preparation of multi-dimensional hybrid materials of nickel-cobalt layered double hydroxide nanorods/nanosheets on electrospun carbon nanofibers for high-performance supercapacitors.
Electrochim Acta,
2015, 174: 456-463
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Controllable preparation of multi-dimensional hybrid materials of nickel-cobalt layered double hydroxide nanorods/nanosheets on electrospun carbon nanofibers for high-performance supercapacitors&author=Lai F&author=Huang Y&author=Miao YE&publication_year=2015&journal=Electrochim Acta&volume=174&pages=456-463
[53]
Jiao
Y,
Pei
J,
Yan
C, et al.
Layered nickel metal-organic framework for high performance alkaline battery-supercapacitor hybrid devices.
J Mater Chem A,
2016, 4: 13344-13351
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Layered nickel metal-organic framework for high performance alkaline battery-supercapacitor hybrid devices&author=Jiao Y&author=Pei J&author=Yan C&publication_year=2016&journal=J Mater Chem A&volume=4&pages=13344-13351
[54]
Xu
J,
Yang
C,
Xue
Y, et al.
Facile synthesis of novel metal-organic nickel hydroxide nanorods for high performance supercapacitor.
Electrochim Acta,
2016, 211: 595-602
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Facile synthesis of novel metal-organic nickel hydroxide nanorods for high performance supercapacitor&author=Xu J&author=Yang C&author=Xue Y&publication_year=2016&journal=Electrochim Acta&volume=211&pages=595-602
[55]
Worrall
SD,
Mann
H,
Rogers
A, et al.
Electrochemical deposition of zeolitic imidazolate framework electrode coatings for supercapacitor electrodes.
Electrochim Acta,
2016, 197: 228-240
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Electrochemical deposition of zeolitic imidazolate framework electrode coatings for supercapacitor electrodes&author=Worrall SD&author=Mann H&author=Rogers A&publication_year=2016&journal=Electrochim Acta&volume=197&pages=228-240
[56]
Yang
J,
Ma
Z,
Gao
W, et al.
Layered structural Co-based MOF with conductive network frames as a new supercapacitor electrode.
Chem Eur J,
2017, 23: 631-636
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Layered structural Co-based MOF with conductive network frames as a new supercapacitor electrode&author=Yang J&author=Ma Z&author=Gao W&publication_year=2017&journal=Chem Eur J&volume=23&pages=631-636
[57]
Sheberla
D,
Bachman
JC,
Elias
JS, et al.
Conductive MOF electrodes for stable supercapacitors with high areal capacitance.
Nat Mater,
2016, 16: 220-224
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Conductive MOF electrodes for stable supercapacitors with high areal capacitance&author=Sheberla D&author=Bachman JC&author=Elias JS&publication_year=2016&journal=Nat Mater&volume=16&pages=220-224
[58]
Pilon
L,
Wang
H,
d’Entremont
A.
Recent advances in continuum modeling of interfacial and transport phenomena in electric double layer capacitors.
J Electrochem Soc,
2015, 162: A5158-A5178
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Recent advances in continuum modeling of interfacial and transport phenomena in electric double layer capacitors&author=Pilon L&author=Wang H&author=d’Entremont A&publication_year=2015&journal=J Electrochem Soc&volume=162&pages=A5158-A5178
[59]
Jeon
JW,
Sharma
R,
Meduri
P, et al.
In situ one-step synthesis of hierarchical nitrogen-doped porous carbon for high-performance supercapacitors.
ACS Appl Mater Interfaces,
2014, 6: 7214-7222
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=In situ one-step synthesis of hierarchical nitrogen-doped porous carbon for high-performance supercapacitors&author=Jeon JW&author=Sharma R&author=Meduri P&publication_year=2014&journal=ACS Appl Mater Interfaces&volume=6&pages=7214-7222
[60]
Hao
F,
Li
L,
Zhang
X, et al.
Synthesis and electrochemical capacitive properties of nitrogen-doped porous carbon micropolyhedra by direct carbonization of zeolitic imidazolate framework-11.
Mater Res Bull,
2015, 66: 88-95
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Synthesis and electrochemical capacitive properties of nitrogen-doped porous carbon micropolyhedra by direct carbonization of zeolitic imidazolate framework-11&author=Hao F&author=Li L&author=Zhang X&publication_year=2015&journal=Mater Res Bull&volume=66&pages=88-95
[61]
Yang
Y,
Hao
S,
Zhao
H, et al.
Hierarchically porous carbons derived from nonporous metal-organic frameworks: synthesis and influence of struts.
Electrochim Acta,
2015, 180: 651-657
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hierarchically porous carbons derived from nonporous metal-organic frameworks: synthesis and influence of struts&author=Yang Y&author=Hao S&author=Zhao H&publication_year=2015&journal=Electrochim Acta&volume=180&pages=651-657
[62]
Yu
M,
Zhang
L,
He
X, et al.
3D interconnected porous carbons from MOF-5 for supercapacitors.
Mater Lett,
2016, 172: 81-84
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=3D interconnected porous carbons from MOF-5 for supercapacitors&author=Yu M&author=Zhang L&author=He X&publication_year=2016&journal=Mater Lett&volume=172&pages=81-84
[63]
Xia
W,
Qiu
B,
Xia
D, et al.
Facile preparation of hierarchically porous carbons from metal-organic gels and their application in energy storage.
Sci Rep,
2013, 3: 1935
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Facile preparation of hierarchically porous carbons from metal-organic gels and their application in energy storage&author=Xia W&author=Qiu B&author=Xia D&publication_year=2013&journal=Sci Rep&volume=3&pages=1935
[64]
Mahmood
A,
Zou
R,
Wang
Q, et al.
Nanostructured electrode materials derived from metal-organic framework xerogels for high-energy-density asymmetric supercapacitor.
ACS Appl Mater Interfaces,
2016, 8: 2148-2157
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nanostructured electrode materials derived from metal-organic framework xerogels for high-energy-density asymmetric supercapacitor&author=Mahmood A&author=Zou R&author=Wang Q&publication_year=2016&journal=ACS Appl Mater Interfaces&volume=8&pages=2148-2157
[65]
Tran
C,
Kalra
V.
Fabrication of porous carbon nanofibers with adjustable pore sizes as electrodes for supercapacitors.
J Power Sources,
2013, 235: 289-296
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fabrication of porous carbon nanofibers with adjustable pore sizes as electrodes for supercapacitors&author=Tran C&author=Kalra V&publication_year=2013&journal=J Power Sources&volume=235&pages=289-296
[66]
Liu
B,
Shioyama
H,
Jiang
H, et al.
Metal-organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor.
Carbon,
2010, 48: 456-463
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Metal-organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor&author=Liu B&author=Shioyama H&author=Jiang H&publication_year=2010&journal=Carbon&volume=48&pages=456-463
[67]
Jin
S,
Deng
H,
Zhan
L, et al.
Synthesis of 3D hierarchical porous carbon as electrode material for electric double layer capacitors.
New Carbon Mater,
2012, 27: 87-92
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Synthesis of 3D hierarchical porous carbon as electrode material for electric double layer capacitors&author=Jin S&author=Deng H&author=Zhan L&publication_year=2012&journal=New Carbon Mater&volume=27&pages=87-92
[68]
Lei
Y,
Gan
M,
Ma
L, et al.
Synthesis of nitrogen-doped porous carbon from zeolitic imidazolate framework-67 and phenolic resin for high performance supercapacitors.
Ceram Int,
2017, 43: 6502-6510
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Synthesis of nitrogen-doped porous carbon from zeolitic imidazolate framework-67 and phenolic resin for high performance supercapacitors&author=Lei Y&author=Gan M&author=Ma L&publication_year=2017&journal=Ceram Int&volume=43&pages=6502-6510
[69]
Zhang
H,
Chen
Y,
Wang
W, et al.
Hierarchical Mo-decorated Co3O4 nanowire arrays on Ni foam substrates for advanced electrochemical capacitors.
J Mater Chem A,
2013, 1: 8593
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hierarchical Mo-decorated Co3O4 nanowire arrays on Ni foam substrates for advanced electrochemical capacitors&author=Zhang H&author=Chen Y&author=Wang W&publication_year=2013&journal=J Mater Chem A&volume=1&pages=8593
[70]
Guo
Y,
Yu
L,
Wang
CY, et al.
Hierarchical tubular structures composed of Mn-based mixed metal oxide nanoflakes with enhanced electrochemical properties.
Adv Funct Mater,
2015, 25: 5184-5189
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hierarchical tubular structures composed of Mn-based mixed metal oxide nanoflakes with enhanced electrochemical properties&author=Guo Y&author=Yu L&author=Wang CY&publication_year=2015&journal=Adv Funct Mater&volume=25&pages=5184-5189
[71]
Liu
X,
Shi
C,
Zhai
C, et al.
Cobalt-based layered metal-organic framework as an ultrahigh capacity supercapacitor electrode material.
ACS Appl Mater Interfaces,
2016, 8: 4585-4591
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cobalt-based layered metal-organic framework as an ultrahigh capacity supercapacitor electrode material&author=Liu X&author=Shi C&author=Zhai C&publication_year=2016&journal=ACS Appl Mater Interfaces&volume=8&pages=4585-4591
[72]
Yuan
C,
Wu
HB,
Xie
Y, et al.
Mixed transition-metal oxides: design, synthesis, and energy-related applications.
Angew Chem Int Ed,
2014, 53: 1488-1504
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mixed transition-metal oxides: design, synthesis, and energy-related applications&author=Yuan C&author=Wu HB&author=Xie Y&publication_year=2014&journal=Angew Chem Int Ed&volume=53&pages=1488-1504
[73]
Yin
Z,
Chen
Y,
Zhao
Y, et al.
Hierarchical nanosheet-based CoMoO4-NiMoO4 nanotubes for applications in asymmetric supercapacitors and the oxygen evolution reaction.
J Mater Chem A,
2015, 3: 22750-22758
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hierarchical nanosheet-based CoMoO4-NiMoO4 nanotubes for applications in asymmetric supercapacitors and the oxygen evolution reaction&author=Yin Z&author=Chen Y&author=Zhao Y&publication_year=2015&journal=J Mater Chem A&volume=3&pages=22750-22758
[74]
Xie
L,
Hu
Z,
Lv
C, et al.
CoxNi1?x double hydroxide nanoparticles with ultrahigh specific capacitances as supercapacitor electrode materials.
Electrochim Acta,
2012, 78: 205-211
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=CoxNi1?x double hydroxide nanoparticles with ultrahigh specific capacitances as supercapacitor electrode materials&author=Xie L&author=Hu Z&author=Lv C&publication_year=2012&journal=Electrochim Acta&volume=78&pages=205-211
[75]
Liang
D,
Tian
Z,
Liu
J, et al.
MoS2 nanosheets decorated with ultrafine Co3O4 nanoparticles for high-performance electrochemical capacitors.
Electrochim Acta,
2015, 182: 376-382
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=MoS2 nanosheets decorated with ultrafine Co3O4 nanoparticles for high-performance electrochemical capacitors&author=Liang D&author=Tian Z&author=Liu J&publication_year=2015&journal=Electrochim Acta&volume=182&pages=376-382
[76]
Meng
F,
Fang
Z,
Li
Z, et al.
Porous Co3O4 materials prepared by solid-state thermolysis of a novel Co-MOF crystal and their superior energy storage performances for supercapacitors.
J Mater Chem A,
2013, 1: 7235-7241
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Porous Co3O4 materials prepared by solid-state thermolysis of a novel Co-MOF crystal and their superior energy storage performances for supercapacitors&author=Meng F&author=Fang Z&author=Li Z&publication_year=2013&journal=J Mater Chem A&volume=1&pages=7235-7241
[77]
Maiti
S,
Pramanik
A,
Mahanty
S.
Extraordinarily high pseudocapacitance of metal organic framework derived nanostructured cerium oxide.
Chem Commun,
2014, 50: 11717-11720
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Extraordinarily high pseudocapacitance of metal organic framework derived nanostructured cerium oxide&author=Maiti S&author=Pramanik A&author=Mahanty S&publication_year=2014&journal=Chem Commun&volume=50&pages=11717-11720
[78]
Liu
K,
You
H,
Jia
G, et al.
Coordination-induced formation of one-dimensional nanostructures of europium benzene-1,3,5-tricarboxylate and its solid-state thermal transformation.
Cryst Growth Des,
2009, 9: 3519-3524
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Coordination-induced formation of one-dimensional nanostructures of europium benzene-1,3,5-tricarboxylate and its solid-state thermal transformation&author=Liu K&author=You H&author=Jia G&publication_year=2009&journal=Cryst Growth Des&volume=9&pages=3519-3524
[79]
Chen
S,
Xue
M,
Li
Y, et al.
Rational design and synthesis of Nix Co3?xO4 nanoparticles derived from multivariate MOF-74 for supercapacitors.
J Mater Chem A,
2015, 3: 20145-20152
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Rational design and synthesis of Nix Co3?xO4 nanoparticles derived from multivariate MOF-74 for supercapacitors&author=Chen S&author=Xue M&author=Li Y&publication_year=2015&journal=J Mater Chem A&volume=3&pages=20145-20152
[80]
Salunkhe
RR,
Tang
J,
Kamachi
Y, et al.
Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal-organic framework.
ACS Nano,
2015, 9: 6288-6296
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal-organic framework&author=Salunkhe RR&author=Tang J&author=Kamachi Y&publication_year=2015&journal=ACS Nano&volume=9&pages=6288-6296
[81]
Liu
S,
Tong
M,
Liu
G, et al.
S,N-containing Co-MOF derived Co9S8@S,N-doped carbon materials as efficient oxygen electrocatalysts and supercapacitor electrode materials.
Inorg Chem Front,
2017, 4: 491-498
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=S,N-containing Co-MOF derived Co9S8@S,N-doped carbon materials as efficient oxygen electrocatalysts and supercapacitor electrode materials&author=Liu S&author=Tong M&author=Liu G&publication_year=2017&journal=Inorg Chem Front&volume=4&pages=491-498
[82]
Wang
DW,
Li
F,
Liu
M, et al.
3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage.
Angew Chem Int Ed,
2008, 47: 373-376
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage&author=Wang DW&author=Li F&author=Liu M&publication_year=2008&journal=Angew Chem Int Ed&volume=47&pages=373-376
[83]
Wang
Q,
Jiao
L,
Du
H, et al.
Co3S4 hollow nanospheres grown on graphene as advanced electrode materials for supercapacitors.
J Mater Chem,
2012, 22: 21387-21391
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Co3S4 hollow nanospheres grown on graphene as advanced electrode materials for supercapacitors&author=Wang Q&author=Jiao L&author=Du H&publication_year=2012&journal=J Mater Chem&volume=22&pages=21387-21391
[84]
Wang
Q,
Jiao
L,
Du
H, et al.
Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors.
J Power Sources,
2014, 245: 101-106
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors&author=Wang Q&author=Jiao L&author=Du H&publication_year=2014&journal=J Power Sources&volume=245&pages=101-106
[85]
Liu
S,
Zhao
Q,
Tong
M, et al.
Ultrafine nickel-cobalt alloy nanoparticles incorporated into three-dimensional porous graphitic carbon as an electrode material for supercapacitors.
J Mater Chem A,
2016, 4: 17080-17086
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ultrafine nickel-cobalt alloy nanoparticles incorporated into three-dimensional porous graphitic carbon as an electrode material for supercapacitors&author=Liu S&author=Zhao Q&author=Tong M&publication_year=2016&journal=J Mater Chem A&volume=4&pages=17080-17086
[86]
Wu
Y,
Liu
S,
Zhao
K, et al.
Chemical deposition of MnO2 nanosheets on graphene-carbon nanofiber paper as free-standing and flexible electrode for supercapacitors.
Ionics,
2016, 22: 1185-1195
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chemical deposition of MnO2 nanosheets on graphene-carbon nanofiber paper as free-standing and flexible electrode for supercapacitors&author=Wu Y&author=Liu S&author=Zhao K&publication_year=2016&journal=Ionics&volume=22&pages=1185-1195
[87]
Zhang
Z,
Li
X,
Wang
C, et al.
Polyacrylonitrile and carbon nanofibers with controllable nanoporous structures by electrospinning.
Macromol Mater Eng,
2009, 294: 673-678
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Polyacrylonitrile and carbon nanofibers with controllable nanoporous structures by electrospinning&author=Zhang Z&author=Li X&author=Wang C&publication_year=2009&journal=Macromol Mater Eng&volume=294&pages=673-678
[88]
Teng
M,
Qiao
J,
Li
F, et al.
Electrospun mesoporous carbon nanofibers produced from phenolic resin and their use in the adsorption of large dye molecules.
Carbon,
2012, 50: 2877-2886
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Electrospun mesoporous carbon nanofibers produced from phenolic resin and their use in the adsorption of large dye molecules&author=Teng M&author=Qiao J&author=Li F&publication_year=2012&journal=Carbon&volume=50&pages=2877-2886
[89]
Zhao
M,
Wang
Y,
Ma
Q, et al.
Ultrathin 2D metal-organic framework nanosheets.
Adv Mater,
2015, 27: 7372-7378
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ultrathin 2D metal-organic framework nanosheets&author=Zhao M&author=Wang Y&author=Ma Q&publication_year=2015&journal=Adv Mater&volume=27&pages=7372-7378
[90]
Meng
W,
Chen
W,
Zhao
L, et al.
Porous Fe3O4/carbon composite electrode material prepared from metal-organic framework template and effect of temperature on its capacitance.
Nano Energy,
2014, 8: 133-140
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Porous Fe3O4/carbon composite electrode material prepared from metal-organic framework template and effect of temperature on its capacitance&author=Meng W&author=Chen W&author=Zhao L&publication_year=2014&journal=Nano Energy&volume=8&pages=133-140
[91]
Salunkhe
RR,
Kamachi
Y,
Torad
NL, et al.
Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons.
J Mater Chem A,
2014, 2: 19848-19854
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons&author=Salunkhe RR&author=Kamachi Y&author=Torad NL&publication_year=2014&journal=J Mater Chem A&volume=2&pages=19848-19854
[92]
Cao
F,
Zhao
M,
Yu
Y, et al.
Synthesis of two-dimensional CoS1.097/nitrogen-doped carbon nanocomposites using metal-organic framework nanosheets as precursors for supercapacitor application.
J Am Chem Soc,
2016, 138: 6924-6927
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Synthesis of two-dimensional CoS1.097/nitrogen-doped carbon nanocomposites using metal-organic framework nanosheets as precursors for supercapacitor application&author=Cao F&author=Zhao M&author=Yu Y&publication_year=2016&journal=J Am Chem Soc&volume=138&pages=6924-6927
[93]
Li
GC,
Liu
PF,
Liu
R, et al.
MOF-derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitors.
Dalton Trans,
2016, 45: 13311-13316
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=MOF-derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitors&author=Li GC&author=Liu PF&author=Liu R&publication_year=2016&journal=Dalton Trans&volume=45&pages=13311-13316
[94]
Yang
J,
Zheng
C,
Xiong
P, et al.
Zn-doped Ni-MOF material with a high supercapacitive performance.
J Mater Chem A,
2014, 2: 19005-19010
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zn-doped Ni-MOF material with a high supercapacitive performance&author=Yang J&author=Zheng C&author=Xiong P&publication_year=2014&journal=J Mater Chem A&volume=2&pages=19005-19010
[95]
Weng
Q,
Wang
X,
Wang
X, et al.
Supercapacitive energy storage performance of molybdenum disulfide nanosheets wrapped with microporous carbons.
J Mater Chem A,
2015, 3: 3097-3102
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Supercapacitive energy storage performance of molybdenum disulfide nanosheets wrapped with microporous carbons&author=Weng Q&author=Wang X&author=Wang X&publication_year=2015&journal=J Mater Chem A&volume=3&pages=3097-3102
[96]
Wang
Z,
Jia
W,
Jiang
M, et al.
Microwave-assisted synthesis of layer-by-layer ultra-large and thin NiAl-LDH/RGO nanocomposites and their excellent performance as electrodes.
Sci China Mater,
2015, 58: 944-952
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Microwave-assisted synthesis of layer-by-layer ultra-large and thin NiAl-LDH/RGO nanocomposites and their excellent performance as electrodes&author=Wang Z&author=Jia W&author=Jiang M&publication_year=2015&journal=Sci China Mater&volume=58&pages=944-952
[97]
Mahmood
N,
Tahir
M,
Mahmood
A, et al.
Role of anions on structure and pseudocapacitive performance of metal double hydroxides decorated with nitrogen-doped graphene.
Sci China Mater,
2015, 58: 114-125
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Role of anions on structure and pseudocapacitive performance of metal double hydroxides decorated with nitrogen-doped graphene&author=Mahmood N&author=Tahir M&author=Mahmood A&publication_year=2015&journal=Sci China Mater&volume=58&pages=114-125
[98]
Li
X,
Hao
C,
Tang
B, et al.
Supercapacitor electrode materials with hierarchically structured pores from carbonization of MWCNTs and ZIF-8 composites.
Nanoscale,
2017, 9: 2178-2187
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Supercapacitor electrode materials with hierarchically structured pores from carbonization of MWCNTs and ZIF-8 composites&author=Li X&author=Hao C&author=Tang B&publication_year=2017&journal=Nanoscale&volume=9&pages=2178-2187
[99]
Xu
X,
Wang
M,
Liu
Y, et al.
In situ construction of carbon nanotubes/nitrogen-doped carbon polyhedra hybrids for supercapacitors.
Energy Storage Mater,
2016, 5: 132-138
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=In situ construction of carbon nanotubes/nitrogen-doped carbon polyhedra hybrids for supercapacitors&author=Xu X&author=Wang M&author=Liu Y&publication_year=2016&journal=Energy Storage Mater&volume=5&pages=132-138
[100]
Wen
P,
Gong
P,
Sun
J, et al.
Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density.
J Mater Chem A,
2015, 3: 13874-13883
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density&author=Wen P&author=Gong P&author=Sun J&publication_year=2015&journal=J Mater Chem A&volume=3&pages=13874-13883
[101]
Zhang
Y,
Lin
B,
Sun
Y, et al.
Carbon nanotubes@metal-organic frameworks as Mn-based symmetrical supercapacitor electrodes for enhanced charge storage.
RSC Adv,
2015, 5: 58100-58106
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Carbon nanotubes@metal-organic frameworks as Mn-based symmetrical supercapacitor electrodes for enhanced charge storage&author=Zhang Y&author=Lin B&author=Sun Y&publication_year=2015&journal=RSC Adv&volume=5&pages=58100-58106
[102]
Zhang
Y,
Lin
B,
Wang
J, et al.
All-solid-state asymmetric supercapacitors based on ZnO quantum dots/carbon/CNT and porous N-doped carbon/CNT electrodes derived from a single ZIF-8/CNT template.
J Mater Chem A,
2016, 4: 10282-10293
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=All-solid-state asymmetric supercapacitors based on ZnO quantum dots/carbon/CNT and porous N-doped carbon/CNT electrodes derived from a single ZIF-8/CNT template&author=Zhang Y&author=Lin B&author=Wang J&publication_year=2016&journal=J Mater Chem A&volume=4&pages=10282-10293
[103]
Kim
D,
Kim
DW,
Hong
WG, et al.
Graphene/ZIF-8 composites with tunable hierarchical porosity and electrical conductivity.
J Mater Chem A,
2016, 4: 7710-7717
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Graphene/ZIF-8 composites with tunable hierarchical porosity and electrical conductivity&author=Kim D&author=Kim DW&author=Hong WG&publication_year=2016&journal=J Mater Chem A&volume=4&pages=7710-7717
[104]
Zhou
Y,
Mao
Z,
Wang
W, et al.
In-situ fabrication of graphene oxide hybrid Ni-based metal-organic framework (Ni–MOFs@GO) with ultrahigh capacitance as electrochemical pseudocapacitor materials.
ACS Appl Mater Interfaces,
2016, 8: 28904-28916
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=In-situ fabrication of graphene oxide hybrid Ni-based metal-organic framework (Ni–MOFs@GO) with ultrahigh capacitance as electrochemical pseudocapacitor materials&author=Zhou Y&author=Mao Z&author=Wang W&publication_year=2016&journal=ACS Appl Mater Interfaces&volume=8&pages=28904-28916
[105]
Yin
D,
Huang
G,
Sun
Q, et al.
RGO/Co3O4 composites prepared using GO-MOFs as precursor for advanced lithium-ion batteries and supercapacitors electrodes.
Electrochim Acta,
2016, 215: 410-419
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=RGO/Co3O4 composites prepared using GO-MOFs as precursor for advanced lithium-ion batteries and supercapacitors electrodes&author=Yin D&author=Huang G&author=Sun Q&publication_year=2016&journal=Electrochim Acta&volume=215&pages=410-419
[106]
Wang
L,
Feng
X,
Ren
L, et al.
Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI.
J Am Chem Soc,
2015, 137: 4920-4923
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI&author=Wang L&author=Feng X&author=Ren L&publication_year=2015&journal=J Am Chem Soc&volume=137&pages=4920-4923
[107]
Lu
C,
Ben
T,
Xu
S, et al.
Electrochemical synthesis of a microporous conductive polymer based on a metal-organic framework thin film.
Angew Chem Int Ed,
2014, 53: 6454-6458
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Electrochemical synthesis of a microporous conductive polymer based on a metal-organic framework thin film&author=Lu C&author=Ben T&author=Xu S&publication_year=2014&journal=Angew Chem Int Ed&volume=53&pages=6454-6458
[108]
Guo
SN,
Zhu
Y,
Yan
YY, et al.
(Metal-organic framework)-polyaniline sandwich structure composites as novel hybrid electrode materials for high-performance supercapacitor.
J Power Sources,
2016, 316: 176-182
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=(Metal-organic framework)-polyaniline sandwich structure composites as novel hybrid electrode materials for high-performance supercapacitor&author=Guo SN&author=Zhu Y&author=Yan YY&publication_year=2016&journal=J Power Sources&volume=316&pages=176-182
[109]
Guo
B,
Yang
Y,
Hu
Z, et al.
Redox-active organic molecules functionalized nitrogen-doped porous carbon derived from metal-organic framework as electrode materials for supercapacitor.
Electrochim Acta,
2017, 223: 74-84
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Redox-active organic molecules functionalized nitrogen-doped porous carbon derived from metal-organic framework as electrode materials for supercapacitor&author=Guo B&author=Yang Y&author=Hu Z&publication_year=2017&journal=Electrochim Acta&volume=223&pages=74-84
[110]
Maiti
S,
Pramanik
A,
Mahanty
S.
Influence of imidazolium-based ionic liquid electrolytes on the performance of nano-structured MnO2 hollow spheres as electrochemical supercapacitor.
RSC Adv,
2015, 5: 41617-41626
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Influence of imidazolium-based ionic liquid electrolytes on the performance of nano-structured MnO2 hollow spheres as electrochemical supercapacitor&author=Maiti S&author=Pramanik A&author=Mahanty S&publication_year=2015&journal=RSC Adv&volume=5&pages=41617-41626
[111]
Jiang
Z,
Li
Z,
Qin
Z, et al.
LDH nanocages synthesized with MOF templates and their high performance as supercapacitors.
Nanoscale,
2013, 5: 11770-11775
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=LDH nanocages synthesized with MOF templates and their high performance as supercapacitors&author=Jiang Z&author=Li Z&author=Qin Z&publication_year=2013&journal=Nanoscale&volume=5&pages=11770-11775
[112]
Srimuk
P,
Luanwuthi
S,
Krittayavathananon
A, et al.
Solid-type supercapacitor of reduced graphene oxide-metal organic framework composite coated on carbon fiber paper.
Electrochim Acta,
2015, 157: 69-77
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Solid-type supercapacitor of reduced graphene oxide-metal organic framework composite coated on carbon fiber paper&author=Srimuk P&author=Luanwuthi S&author=Krittayavathananon A&publication_year=2015&journal=Electrochim Acta&volume=157&pages=69-77
[113]
Fu
D,
Li
H,
Zhang
XM, et al.
Flexible solid-state supercapacitor fabricated by metal-organic framework/graphene oxide hybrid interconnected with PEDOT.
Mater Chem Phys,
2016, 179: 166-173
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Flexible solid-state supercapacitor fabricated by metal-organic framework/graphene oxide hybrid interconnected with PEDOT&author=Fu D&author=Li H&author=Zhang XM&publication_year=2016&journal=Mater Chem Phys&volume=179&pages=166-173
[114]
Banerjee
PC,
Lobo
DE,
Middag
R, et al.
Electrochemical capacitance of Ni-doped metal organic framework and reduced graphene oxide composites: more than the sum of its parts.
ACS Appl Mater Interfaces,
2015, 7: 3655-3664
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Electrochemical capacitance of Ni-doped metal organic framework and reduced graphene oxide composites: more than the sum of its parts&author=Banerjee PC&author=Lobo DE&author=Middag R&publication_year=2015&journal=ACS Appl Mater Interfaces&volume=7&pages=3655-3664