References
[1]
Liu
W,
Song
MS,
Kong
B, et al.
Flexible and stretchable energy storage: recent advances and future perspectives.
Adv Mater,
2017, 29: 1603436
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Flexible and stretchable energy storage: recent advances and future perspectives&author=Liu W&author=Song MS&author=Kong B&publication_year=2017&journal=Adv Mater&volume=29&pages=1603436
[2]
Wen
L,
Li
F,
Cheng
HM.
Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices.
Adv Mater,
2016, 28: 4306-4337
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices&author=Wen L&author=Li F&author=Cheng HM&publication_year=2016&journal=Adv Mater&volume=28&pages=4306-4337
[3]
Zhang
J,
Zhao
XS.
On the configuration of supercapacitors for maximizing electrochemical performance.
ChemSusChem,
2012, 5: 818-841
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=On the configuration of supercapacitors for maximizing electrochemical performance&author=Zhang J&author=Zhao XS&publication_year=2012&journal=ChemSusChem&volume=5&pages=818-841
[4]
Yu
M,
Wang
Z,
Han
Y, et al.
Recent progress in the development of anodes for asymmetric supercapacitors.
J Mater Chem A,
2016, 4: 4634-4658
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Recent progress in the development of anodes for asymmetric supercapacitors&author=Yu M&author=Wang Z&author=Han Y&publication_year=2016&journal=J Mater Chem A&volume=4&pages=4634-4658
[5]
Ge
J,
Lan
M,
Liu
W, et al.
Graphene quantum dots as efficient, metal-free, visible-light-active photocatalysts.
Sci China Mater,
2016, 59: 12-19
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Graphene quantum dots as efficient, metal-free, visible-light-active photocatalysts&author=Ge J&author=Lan M&author=Liu W&publication_year=2016&journal=Sci China Mater&volume=59&pages=12-19
[6]
Lu
K,
Hu
Z,
Xiang
Z, et al.
Cation intercalation in manganese oxide nanosheets: effects on lithium and sodium storage.
Angew Chem,
2016, 128: 10604-10608
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cation intercalation in manganese oxide nanosheets: effects on lithium and sodium storage&author=Lu K&author=Hu Z&author=Xiang Z&publication_year=2016&journal=Angew Chem&volume=128&pages=10604-10608
[7]
Huang
Q,
Wang
D,
Zheng
Z.
Textile-based electrochemical energy storage devices.
Adv Energ Mater,
2016, 6: 1600783
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Textile-based electrochemical energy storage devices&author=Huang Q&author=Wang D&author=Zheng Z&publication_year=2016&journal=Adv Energ Mater&volume=6&pages=1600783
[8]
Liu
L,
Niu
Z,
Chen
J.
Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations.
Chem Soc Rev,
2016, 45: 4340-4363
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations&author=Liu L&author=Niu Z&author=Chen J&publication_year=2016&journal=Chem Soc Rev&volume=45&pages=4340-4363
[9]
Guo
K,
Yu
N,
Hou
Z, et al.
Smart supercapacitors with deformable and healable functions.
J Mater Chem A,
2017, 5: 16-30
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Smart supercapacitors with deformable and healable functions&author=Guo K&author=Yu N&author=Hou Z&publication_year=2017&journal=J Mater Chem A&volume=5&pages=16-30
[10]
Gelinck
GH,
Huitema
HEA,
van Veenendaal
E, et al.
Flexible active-matrix displays and shift registers based on solution-processed organic transistors.
Nat Mater,
2004, 3: 106-110
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Flexible active-matrix displays and shift registers based on solution-processed organic transistors&author=Gelinck GH&author=Huitema HEA&author=van Veenendaal E&publication_year=2004&journal=Nat Mater&volume=3&pages=106-110
[11]
Moonen
PF,
Yakimets
I,
Huskens
J.
Fabrication of transistors on flexible substrates: from mass-printing to high-resolution alternative lithography strategies.
Adv Mater,
2012, 24: 5526-5541
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fabrication of transistors on flexible substrates: from mass-printing to high-resolution alternative lithography strategies&author=Moonen PF&author=Yakimets I&author=Huskens J&publication_year=2012&journal=Adv Mater&volume=24&pages=5526-5541
[12]
Tee
BCK,
Wang
C,
Allen
R, et al.
An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications.
Nat Nanotech,
2012, 7: 825-832
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications&author=Tee BCK&author=Wang C&author=Allen R&publication_year=2012&journal=Nat Nanotech&volume=7&pages=825-832
[13]
Hammock
ML,
Chortos
A,
Tee
BCK, et al.
25th Anniversary Article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress.
Adv Mater,
2013, 25: 5997-6038
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=25th Anniversary Article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress&author=Hammock ML&author=Chortos A&author=Tee BCK&publication_year=2013&journal=Adv Mater&volume=25&pages=5997-6038
[14]
Zhang
X,
Zhang
H,
Lin
Z, et al.
Recent advances and challenges of stretchable supercapacitors based on carbon materials.
Sci China Mater,
2016, 59: 475-494
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Recent advances and challenges of stretchable supercapacitors based on carbon materials&author=Zhang X&author=Zhang H&author=Lin Z&publication_year=2016&journal=Sci China Mater&volume=59&pages=475-494
[15]
Fan
Z,
Yan
J,
Zhi
L, et al.
A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors.
Adv Mater,
2010, 22: 3723-3728
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors&author=Fan Z&author=Yan J&author=Zhi L&publication_year=2010&journal=Adv Mater&volume=22&pages=3723-3728
[16]
Qin
J,
Zhou
F,
Xiao
H, et al.
Mesoporous polypyrrole-based graphene nanosheets anchoring redox polyoxometalate for all-solid-state micro-supercapacitors with enhanced volumetric capacitance.
Sci China Mater,
2017, doi: 10.1007/s40843-017-9132-8
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mesoporous polypyrrole-based graphene nanosheets anchoring redox polyoxometalate for all-solid-state micro-supercapacitors with enhanced volumetric capacitance&author=Qin J&author=Zhou F&author=Xiao H&publication_year=2017&journal=Sci China Mater&volume=doi: 10.1007/s40843-017-9132-8&
[17]
Li
YX,
Gong
ZL,
Yang
Y.
Synthesis and characterization of Li2MnSiO4/C nanocomposite cathode material for lithium ion batteries.
J Power Sources,
2007, 174: 528-532
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Synthesis and characterization of Li2MnSiO4/C nanocomposite cathode material for lithium ion batteries&author=Li YX&author=Gong ZL&author=Yang Y&publication_year=2007&journal=J Power Sources&volume=174&pages=528-532
[18]
Cao
AM,
Hu
JS,
Liang
HP, et al.
Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries.
Angew Chem Int Ed,
2005, 44: 4391-4395
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries&author=Cao AM&author=Hu JS&author=Liang HP&publication_year=2005&journal=Angew Chem Int Ed&volume=44&pages=4391-4395
[19]
Cai
X,
Zhang
C,
Zhang
S, et al.
Application of carbon fibers to flexible, miniaturized wire/fiber-shaped energy conversion and storage devices.
J Mater Chem A,
2017, 5: 2444-2459
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Application of carbon fibers to flexible, miniaturized wire/fiber-shaped energy conversion and storage devices&author=Cai X&author=Zhang C&author=Zhang S&publication_year=2017&journal=J Mater Chem A&volume=5&pages=2444-2459
[20]
Wu
Z,
Zhang
X.
N,O-codoped porous carbon nanosheets for capacitors with ultra-high capacitance.
Sci China Mater,
2016, 59: 547-557
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=N,O-codoped porous carbon nanosheets for capacitors with ultra-high capacitance&author=Wu Z&author=Zhang X&publication_year=2016&journal=Sci China Mater&volume=59&pages=547-557
[21]
Wu
S,
Zhu
Y.
Highly densified carbon electrode materials towards practical supercapacitor devices.
Sci China Mater,
2017, 60: 25-38
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Highly densified carbon electrode materials towards practical supercapacitor devices&author=Wu S&author=Zhu Y&publication_year=2017&journal=Sci China Mater&volume=60&pages=25-38
[22]
Lu
K,
Zhang
J,
Wang
Y, et al.
Interfacial deposition of three-dimensional nickel hydroxide nanosheet-graphene aerogel on Ni wire for flexible fiber asymmetric supercapacitors.
ACS Sustain Chem Eng,
2017, 5: 821-827
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Interfacial deposition of three-dimensional nickel hydroxide nanosheet-graphene aerogel on Ni wire for flexible fiber asymmetric supercapacitors&author=Lu K&author=Zhang J&author=Wang Y&publication_year=2017&journal=ACS Sustain Chem Eng&volume=5&pages=821-827
[23]
Yin
H,
Tang
Z.
Ultrathin two-dimensional layered metal hydroxides: an emerging platform for advanced catalysis, energy conversion and storage.
Chem Soc Rev,
2016, 45: 4873-4891
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ultrathin two-dimensional layered metal hydroxides: an emerging platform for advanced catalysis, energy conversion and storage&author=Yin H&author=Tang Z&publication_year=2016&journal=Chem Soc Rev&volume=45&pages=4873-4891
[24]
Mendoza-Sánchez
B,
Gogotsi
Y.
Synthesis of two-dimensional materials for capacitive energy storage.
Adv Mater,
2016, 28: 6104-6135
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Synthesis of two-dimensional materials for capacitive energy storage&author=Mendoza-Sánchez B&author=Gogotsi Y&publication_year=2016&journal=Adv Mater&volume=28&pages=6104-6135
[25]
Gao
Y.
Graphene and polymer composites for supercapacitor applications: a review.
Nanoscale Res Lett,
2017, 12: 387
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Graphene and polymer composites for supercapacitor applications: a review&author=Gao Y&publication_year=2017&journal=Nanoscale Res Lett&volume=12&pages=387
[26]
Wang
K,
Zhang
X,
Sun
X, et al.
Conducting polymer hydrogel materials for high-performance flexible solid-state supercapacitors.
Sci China Mater,
2016, 59: 412-420
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Conducting polymer hydrogel materials for high-performance flexible solid-state supercapacitors&author=Wang K&author=Zhang X&author=Sun X&publication_year=2016&journal=Sci China Mater&volume=59&pages=412-420
[27]
Wang
K,
Wu
H,
Meng
Y, et al.
Conducting polymer nanowire arrays for high performance supercapacitors.
Small,
2014, 10: 14-31
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Conducting polymer nanowire arrays for high performance supercapacitors&author=Wang K&author=Wu H&author=Meng Y&publication_year=2014&journal=Small&volume=10&pages=14-31
[28]
Zhang
G,
Jin
X,
Li
H, et al.
N-doped crumpled graphene: bottom-up synthesis and its superior oxygen reduction performance.
Sci China Mater,
2016, 59: 337-347
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=N-doped crumpled graphene: bottom-up synthesis and its superior oxygen reduction performance&author=Zhang G&author=Jin X&author=Li H&publication_year=2016&journal=Sci China Mater&volume=59&pages=337-347
[29]
Shao
Y,
El-Kady
MF,
Wang
LJ, et al.
Graphene-based materials for flexible supercapacitors.
Chem Soc Rev,
2015, 44: 3639-3665
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Graphene-based materials for flexible supercapacitors&author=Shao Y&author=El-Kady MF&author=Wang LJ&publication_year=2015&journal=Chem Soc Rev&volume=44&pages=3639-3665
[30]
Zhang
J,
Dai
L.
Nitrogen, phosphorus, and fluorine tri-doped graphene as a multifunctional catalyst for self-powered electrochemical water splitting.
Angew Chem Int Ed,
2016, 55: 13296-13300
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nitrogen, phosphorus, and fluorine tri-doped graphene as a multifunctional catalyst for self-powered electrochemical water splitting&author=Zhang J&author=Dai L&publication_year=2016&journal=Angew Chem Int Ed&volume=55&pages=13296-13300
[31]
Yu
M,
Zhou
S,
Liu
Y, et al.
Long life rechargeable Li-O2 batteries enabled by enhanced charge transfer in nanocable-like Fe@N-doped carbon nanotube catalyst.
Sci China Mater,
2017, 60: 415-426
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Long life rechargeable Li-O2 batteries enabled by enhanced charge transfer in nanocable-like Fe@N-doped carbon nanotube catalyst&author=Yu M&author=Zhou S&author=Liu Y&publication_year=2017&journal=Sci China Mater&volume=60&pages=415-426
[32]
Ma
Z,
Tao
L,
Liu
D, et al.
Ultrafine nano-sulfur particles anchored on in situ exfoliated graphene for lithium-sulfur batteries.
J Mater Chem A,
2017, 5: 9412-9417
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ultrafine nano-sulfur particles anchored on in situ exfoliated graphene for lithium-sulfur batteries&author=Ma Z&author=Tao L&author=Liu D&publication_year=2017&journal=J Mater Chem A&volume=5&pages=9412-9417
[33]
Liu
Z,
Zhao
Z,
Wang
Y, et al.
In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis.
Adv Mater,
2017, 29: 1606207
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis&author=Liu Z&author=Zhao Z&author=Wang Y&publication_year=2017&journal=Adv Mater&volume=29&pages=1606207
[34]
Wang
S,
Jiang
SP.
Prospects of fuel cell technologies.
Nat Sci Rev,
2017, : nww099
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Prospects of fuel cell technologies&author=Wang S&author=Jiang SP&publication_year=2017&journal=Nat Sci Rev&pages=nww099
[35]
Yan
D,
Li
Y,
Huo
J, et al.
Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions.
Adv Mater,
2017, 414: 1606459
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions&author=Yan D&author=Li Y&author=Huo J&publication_year=2017&journal=Adv Mater&volume=414&pages=1606459
[36]
Dong
L,
Xu
C,
Li
Y, et al.
Flexible electrodes and supercapacitors for wearable energy storage: a review by category.
J Mater Chem A,
2016, 4: 4659-4685
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Flexible electrodes and supercapacitors for wearable energy storage: a review by category&author=Dong L&author=Xu C&author=Li Y&publication_year=2016&journal=J Mater Chem A&volume=4&pages=4659-4685
[37]
Iijima
S.
Helical microtubules of graphitic carbon.
Nature,
1991, 354: 56-58
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Helical microtubules of graphitic carbon&author=Iijima S&publication_year=1991&journal=Nature&volume=354&pages=56-58
[38]
De Volder
MFL,
Tawfick
SH,
Baughman
RH, et al.
Carbon nanotubes: present and future commercial applications.
Science,
2013, 339: 535-539
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Carbon nanotubes: present and future commercial applications&author=De Volder MFL&author=Tawfick SH&author=Baughman RH&publication_year=2013&journal=Science&volume=339&pages=535-539
[39]
Park
S,
Vosguerichian
M,
Bao
Z.
A review of fabrication and applications of carbon nanotube film-based flexible electronics.
Nanoscale,
2013, 5: 1727-1752
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A review of fabrication and applications of carbon nanotube film-based flexible electronics&author=Park S&author=Vosguerichian M&author=Bao Z&publication_year=2013&journal=Nanoscale&volume=5&pages=1727-1752
[40]
Yang
F,
Wang
X,
Zhang
D, et al.
Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts.
Nature,
2014, 510: 522-524
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts&author=Yang F&author=Wang X&author=Zhang D&publication_year=2014&journal=Nature&volume=510&pages=522-524
[41]
Niu
Z,
Luan
P,
Shao
Q, et al.
A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes.
Energ Environ Sci,
2012, 5: 8726-8733
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes&author=Niu Z&author=Luan P&author=Shao Q&publication_year=2012&journal=Energ Environ Sci&volume=5&pages=8726-8733
[42]
Kang
YJ,
Chung
H,
Han
CH, et al.
All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes.
Nanotechnology,
2012, 23: 289501
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes&author=Kang YJ&author=Chung H&author=Han CH&publication_year=2012&journal=Nanotechnology&volume=23&pages=289501
[43]
Niu
Z,
Dong
H,
Zhu
B, et al.
Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture.
Adv Mater,
2013, 25: 1058-1064
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture&author=Niu Z&author=Dong H&author=Zhu B&publication_year=2013&journal=Adv Mater&volume=25&pages=1058-1064
[44]
Zeng
S,
Chen
H,
Cai
F, et al.
Electrochemical fabrication of carbon nanotube/polyaniline hydrogel film for all-solid-state flexible supercapacitor with high areal capacitance.
J Mater Chem A,
2015, 3: 23864-23870
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Electrochemical fabrication of carbon nanotube/polyaniline hydrogel film for all-solid-state flexible supercapacitor with high areal capacitance&author=Zeng S&author=Chen H&author=Cai F&publication_year=2015&journal=J Mater Chem A&volume=3&pages=23864-23870
[45]
Yu
J,
Lu
W,
Pei
S, et al.
Omnidirectionally stretchable high-performance supercapacitor based on isotropic buckled carbon nanotube films.
ACS Nano,
2016, 10: 5204-5211
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Omnidirectionally stretchable high-performance supercapacitor based on isotropic buckled carbon nanotube films&author=Yu J&author=Lu W&author=Pei S&publication_year=2016&journal=ACS Nano&volume=10&pages=5204-5211
[46]
Lv
T,
Yao
Y,
Li
N, et al.
Highly stretchable supercapacitors based on aligned carbon nanotube/molybdenum disulfide composites.
Angew Chem Int Ed,
2016, 55: 9191-9195
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Highly stretchable supercapacitors based on aligned carbon nanotube/molybdenum disulfide composites&author=Lv T&author=Yao Y&author=Li N&publication_year=2016&journal=Angew Chem Int Ed&volume=55&pages=9191-9195
[47]
Li
J,
Lu
W,
Yan
Y, et al.
High performance solid-state flexible supercapacitor based on Fe3O4/carbon nanotube/polyaniline ternary films.
J Mater Chem A,
2017, 5: 11271-11277
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=High performance solid-state flexible supercapacitor based on Fe3O4/carbon nanotube/polyaniline ternary films&author=Li J&author=Lu W&author=Yan Y&publication_year=2017&journal=J Mater Chem A&volume=5&pages=11271-11277
[48]
Zhao
J,
Chen
J,
Xu
S, et al.
Hierarchical nimn layered double hydroxide/carbon nanotubes architecture with superb energy density for flexible supercapacitors.
Adv Funct Mater,
2014, 24: 2938-2946
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hierarchical nimn layered double hydroxide/carbon nanotubes architecture with superb energy density for flexible supercapacitors&author=Zhao J&author=Chen J&author=Xu S&publication_year=2014&journal=Adv Funct Mater&volume=24&pages=2938-2946
[49]
Zhao
MQ,
Ren
CE,
Ling
Z, et al.
Flexible Mxene/carbon nanotube composite paper with high volumetric capacitance.
Adv Mater,
2015, 27: 339-345
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Flexible Mxene/carbon nanotube composite paper with high volumetric capacitance&author=Zhao MQ&author=Ren CE&author=Ling Z&publication_year=2015&journal=Adv Mater&volume=27&pages=339-345
[50]
Yuksel
R,
Sarioba
Z,
Cirpan
A, et al.
Transparent and flexible supercapacitors with single walled carbon nanotube thin film electrodes.
ACS Appl Mater Interfaces,
2014, 6: 15434-15439
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Transparent and flexible supercapacitors with single walled carbon nanotube thin film electrodes&author=Yuksel R&author=Sarioba Z&author=Cirpan A&publication_year=2014&journal=ACS Appl Mater Interfaces&volume=6&pages=15434-15439
[51]
Du
L,
Yang
P,
Yu
X, et al.
Flexible supercapacitors based on carbon nanotube/MnO2 nanotube hybrid porous films for wearable electronic devices.
J Mater Chem A,
2014, 2: 17561-17567
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Flexible supercapacitors based on carbon nanotube/MnO2 nanotube hybrid porous films for wearable electronic devices&author=Du L&author=Yang P&author=Yu X&publication_year=2014&journal=J Mater Chem A&volume=2&pages=17561-17567
[52]
Chen
Y,
Du
L,
Yang
P, et al.
Significantly enhanced robustness and electrochemical performance of flexible carbon nanotube-based supercapacitors by electrodepositing polypyrrole.
J Power Sources,
2015, 287: 68-74
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Significantly enhanced robustness and electrochemical performance of flexible carbon nanotube-based supercapacitors by electrodepositing polypyrrole&author=Chen Y&author=Du L&author=Yang P&publication_year=2015&journal=J Power Sources&volume=287&pages=68-74
[53]
Yu
M,
Zhang
Y,
Zeng
Y, et al.
Water surface assisted synthesis of large-scale carbon nanotube film for high-performance and stretchable supercapacitors.
Adv Mater,
2014, 26: 4724-4729
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Water surface assisted synthesis of large-scale carbon nanotube film for high-performance and stretchable supercapacitors&author=Yu M&author=Zhang Y&author=Zeng Y&publication_year=2014&journal=Adv Mater&volume=26&pages=4724-4729
[54]
de Souza
VHR,
Oliveira
MM,
Zarbin
AJG.
Thin and flexible all-solid supercapacitor prepared from novel single wall carbon nanotubes/polyaniline thin films obtained in liquid-liquid interfaces.
J Power Sources,
2014, 260: 34-42
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Thin and flexible all-solid supercapacitor prepared from novel single wall carbon nanotubes/polyaniline thin films obtained in liquid-liquid interfaces&author=de Souza VHR&author=Oliveira MM&author=Zarbin AJG&publication_year=2014&journal=J Power Sources&volume=260&pages=34-42
[55]
Shin
SR,
Farzad
R,
Tamayol
A, et al.
A bioactive carbon nanotube-based ink for printing 2D and 3D flexible electronics.
Adv Mater,
2016, 28: 3280-3289
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=A bioactive carbon nanotube-based ink for printing 2D and 3D flexible electronics&author=Shin SR&author=Farzad R&author=Tamayol A&publication_year=2016&journal=Adv Mater&volume=28&pages=3280-3289
[56]
Song
L,
Cao
X,
Li
L, et al.
General method for large-area films of carbon nanomaterials and application of a self-assembled carbon nanotube film as a high-performance electrode material for an all-solid-state supercapacitor.
Adv Funct Mater,
2017, 27: 1700474
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=General method for large-area films of carbon nanomaterials and application of a self-assembled carbon nanotube film as a high-performance electrode material for an all-solid-state supercapacitor&author=Song L&author=Cao X&author=Li L&publication_year=2017&journal=Adv Funct Mater&volume=27&pages=1700474
[57]
Chen
C,
Cao
J,
Lu
Q, et al.
Foldable all-solid-state supercapacitors integrated with photodetectors.
Adv Funct Mater,
2017, 27: 1604639
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Foldable all-solid-state supercapacitors integrated with photodetectors&author=Chen C&author=Cao J&author=Lu Q&publication_year=2017&journal=Adv Funct Mater&volume=27&pages=1604639
[58]
Lee
H,
Kim
H,
Cho
MS, et al.
Fabrication of polypyrrole (PPy)/carbon nanotube (CNT) composite electrode on ceramic fabric for supercapacitor applications.
Electrochim Acta,
2011, 56: 7460-7466
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fabrication of polypyrrole (PPy)/carbon nanotube (CNT) composite electrode on ceramic fabric for supercapacitor applications&author=Lee H&author=Kim H&author=Cho MS&publication_year=2011&journal=Electrochim Acta&volume=56&pages=7460-7466
[59]
Lu
X,
Dou
H,
Yuan
C, et al.
Polypyrrole/carbon nanotube nanocomposite enhanced the electrochemical capacitance of flexible graphene film for supercapacitors.
J Power Sources,
2012, 197: 319-324
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Polypyrrole/carbon nanotube nanocomposite enhanced the electrochemical capacitance of flexible graphene film for supercapacitors&author=Lu X&author=Dou H&author=Yuan C&publication_year=2012&journal=J Power Sources&volume=197&pages=319-324
[60]
Huang
F,
Vanhaecke
E,
Chen
D.
In situ polymerization and characterizations of polyaniline on MWCNT powders and aligned MWCNT films.
Catal Today,
2010, 150: 71-76
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=In situ polymerization and characterizations of polyaniline on MWCNT powders and aligned MWCNT films&author=Huang F&author=Vanhaecke E&author=Chen D&publication_year=2010&journal=Catal Today&volume=150&pages=71-76
[61]
Zhang
H,
Cao
G,
Yang
Y.
Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries.
Energ Environ Sci,
2009, 2: 932-943
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries&author=Zhang H&author=Cao G&author=Yang Y&publication_year=2009&journal=Energ Environ Sci&volume=2&pages=932-943
[62]
Cai
Z,
Li
L,
Ren
J, et al.
Flexible, weavable and efficient microsupercapacitor wires based on polyaniline composite fibers incorporated with aligned carbon nanotubes.
J Mater Chem A,
2013, 1: 258-261
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Flexible, weavable and efficient microsupercapacitor wires based on polyaniline composite fibers incorporated with aligned carbon nanotubes&author=Cai Z&author=Li L&author=Ren J&publication_year=2013&journal=J Mater Chem A&volume=1&pages=258-261
[63]
Yu
D,
Goh
K,
Wang
H, et al.
Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage.
Nat Nanotech,
2014, 9: 555-562
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage&author=Yu D&author=Goh K&author=Wang H&publication_year=2014&journal=Nat Nanotech&volume=9&pages=555-562
[64]
Huang
F,
Lou
F,
Chen
D.
Exploring aligned-carbon-nanotubes@polyaniline arrays on household Al as supercapacitors.
ChemSusChem,
2012, 5: 888-895
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Exploring aligned-carbon-nanotubes@polyaniline arrays on household Al as supercapacitors&author=Huang F&author=Lou F&author=Chen D&publication_year=2012&journal=ChemSusChem&volume=5&pages=888-895
[65]
Lin
H,
Li
L,
Ren
J, et al.
Conducting polymer composite film incorporated with aligned carbon nanotubes for transparent, flexible and efficient supercapacitor.
Sci Rep,
2013, 3: 1353
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Conducting polymer composite film incorporated with aligned carbon nanotubes for transparent, flexible and efficient supercapacitor&author=Lin H&author=Li L&author=Ren J&publication_year=2013&journal=Sci Rep&volume=3&pages=1353
[66]
Chen
T,
Peng
H,
Durstock
M, et al.
High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets.
Sci Rep,
2014, 4: 3612
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets&author=Chen T&author=Peng H&author=Durstock M&publication_year=2014&journal=Sci Rep&volume=4&pages=3612
[67]
Pan
S,
Lin
H,
Deng
J, et al.
Novel wearable energy devices based on aligned carbon nanotube fiber textiles.
Adv Energ Mater,
2015, 5: 1401438
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Novel wearable energy devices based on aligned carbon nanotube fiber textiles&author=Pan S&author=Lin H&author=Deng J&publication_year=2015&journal=Adv Energ Mater&volume=5&pages=1401438
[68]
Malik
R,
Zhang
L,
McConnell
C, et al.
Three-dimensional, free-standing polyaniline/carbon nanotube composite-based electrode for high-performance supercapacitors.
Carbon,
2017, 116: 579-590
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Three-dimensional, free-standing polyaniline/carbon nanotube composite-based electrode for high-performance supercapacitors&author=Malik R&author=Zhang L&author=McConnell C&publication_year=2017&journal=Carbon&volume=116&pages=579-590
[69]
Cherusseri
J,
Kar
KK.
Ultra-flexible fibrous supercapacitors with carbon nanotube/polypyrrole brush-like electrodes.
J Mater Chem A,
2016, 4: 9910-9922
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ultra-flexible fibrous supercapacitors with carbon nanotube/polypyrrole brush-like electrodes&author=Cherusseri J&author=Kar KK&publication_year=2016&journal=J Mater Chem A&volume=4&pages=9910-9922
[70]
Zhang
G,
Song
Y,
Zhang
H, et al.
Radially aligned porous carbon nanotube arrays on carbon fibers: a hierarchical 3D carbon nanostructure for high-performance capacitive energy storage.
Adv Funct Mater,
2016, 26: 3012-3020
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Radially aligned porous carbon nanotube arrays on carbon fibers: a hierarchical 3D carbon nanostructure for high-performance capacitive energy storage&author=Zhang G&author=Song Y&author=Zhang H&publication_year=2016&journal=Adv Funct Mater&volume=26&pages=3012-3020
[71]
Reit
R,
Nguyen
J,
Ready
W.
Growth time performance dependence of vertically aligned carbon nanotube supercapacitors grown on aluminum substrates.
Electrochim Acta,
2013, 91: 96-100
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Growth time performance dependence of vertically aligned carbon nanotube supercapacitors grown on aluminum substrates&author=Reit R&author=Nguyen J&author=Ready W&publication_year=2013&journal=Electrochim Acta&volume=91&pages=96-100
[72]
Zhao
W,
Li
Y,
Wu
S, et al.
Highly stable carbon nanotube/polyaniline porous network for multifunctional applications.
ACS Appl Mater Interfaces,
2016, 8: 34027-34033
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Highly stable carbon nanotube/polyaniline porous network for multifunctional applications&author=Zhao W&author=Li Y&author=Wu S&publication_year=2016&journal=ACS Appl Mater Interfaces&volume=8&pages=34027-34033
[73]
Li
P,
Kong
C,
Shang
Y, et al.
Highly deformation-tolerant carbon nanotube sponges as supercapacitor electrodes.
Nanoscale,
2013, 5: 8472-8479
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Highly deformation-tolerant carbon nanotube sponges as supercapacitor electrodes&author=Li P&author=Kong C&author=Shang Y&publication_year=2013&journal=Nanoscale&volume=5&pages=8472-8479
[74]
Cheng
X,
Gui
X,
Lin
Z, et al.
Three-dimensional α-Fe2O3/carbon nanotube sponges as flexible supercapacitor electrodes.
J Mater Chem A,
2015, 3: 20927-20934
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Three-dimensional α-Fe2O3/carbon nanotube sponges as flexible supercapacitor electrodes&author=Cheng X&author=Gui X&author=Lin Z&publication_year=2015&journal=J Mater Chem A&volume=3&pages=20927-20934
[75]
Li
P,
Shi
E,
Yang
Y, et al.
Carbon nanotube-polypyrrole core-shell sponge and its application as highly compressible supercapacitor electrode.
Nano Res,
2013, 7: 209-218
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Carbon nanotube-polypyrrole core-shell sponge and its application as highly compressible supercapacitor electrode&author=Li P&author=Shi E&author=Yang Y&publication_year=2013&journal=Nano Res&volume=7&pages=209-218
[76]
Wang
K,
Meng
Q,
Zhang
Y, et al.
High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays.
Adv Mater,
2013, 25: 1494-1498
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays&author=Wang K&author=Meng Q&author=Zhang Y&publication_year=2013&journal=Adv Mater&volume=25&pages=1494-1498
[77]
Zhang
D,
Miao
M,
Niu
H, et al.
Core-spun carbon nanotube yarn supercapacitors for wearable electronic textiles.
ACS Nano,
2014, 8: 4571-4579
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Core-spun carbon nanotube yarn supercapacitors for wearable electronic textiles&author=Zhang D&author=Miao M&author=Niu H&publication_year=2014&journal=ACS Nano&volume=8&pages=4571-4579
[78]
Shang
Y,
Wang
C,
He
X, et al.
Self-stretchable, helical carbon nanotube yarn supercapacitors with stable performance under extreme deformation conditions.
Nano Energ,
2015, 12: 401-409
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Self-stretchable, helical carbon nanotube yarn supercapacitors with stable performance under extreme deformation conditions&author=Shang Y&author=Wang C&author=He X&publication_year=2015&journal=Nano Energ&volume=12&pages=401-409
[79]
Li
P,
Yang
Y,
Shi
E, et al.
Core-double-shell, carbon nanotube@polypyrrole@MnO2 sponge as freestanding, compressible supercapacitor electrode.
ACS Appl Mater Interfaces,
2014, 6: 5228-5234
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Core-double-shell, carbon nanotube@polypyrrole@MnO2 sponge as freestanding, compressible supercapacitor electrode&author=Li P&author=Yang Y&author=Shi E&publication_year=2014&journal=ACS Appl Mater Interfaces&volume=6&pages=5228-5234
[80]
Dong
Z,
Jiang
C,
Cheng
H, et al.
Facile fabrication of light, flexible and multifunctional graphene fibers.
Adv Mater,
2012, 24: 1856-1861
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Facile fabrication of light, flexible and multifunctional graphene fibers&author=Dong Z&author=Jiang C&author=Cheng H&publication_year=2012&journal=Adv Mater&volume=24&pages=1856-1861
[81]
Cong
HP,
Ren
XC,
Wang
P, et al.
Wet-spinning assembly of continuous, neat and macroscopic graphene fibers.
Sci Rep,
2012, 2: 613
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wet-spinning assembly of continuous, neat and macroscopic graphene fibers&author=Cong HP&author=Ren XC&author=Wang P&publication_year=2012&journal=Sci Rep&volume=2&pages=613
[82]
Li
X,
Zhao
T,
Chen
Q, et al.
Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers.
Phys Chem Chem Phys,
2013, 15: 17752-17757
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers&author=Li X&author=Zhao T&author=Chen Q&publication_year=2013&journal=Phys Chem Chem Phys&volume=15&pages=17752-17757
[83]
Li
X,
Zhao
T,
Wang
K, et al.
Directly drawing self-assembled, porous, and monolithic graphene fiber from chemical vapor deposition grown graphene film and its electrochemical properties.
Langmuir,
2011, 27: 12164-12171
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Directly drawing self-assembled, porous, and monolithic graphene fiber from chemical vapor deposition grown graphene film and its electrochemical properties&author=Li X&author=Zhao T&author=Wang K&publication_year=2011&journal=Langmuir&volume=27&pages=12164-12171
[84]
Meng
Y,
Zhao
Y,
Hu
C, et al.
All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles.
Adv Mater,
2013, 25: 2326-2331
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles&author=Meng Y&author=Zhao Y&author=Hu C&publication_year=2013&journal=Adv Mater&volume=25&pages=2326-2331
[85]
Li
Y,
Sheng
K,
Yuan
W, et al.
A high-performance flexible fibre-shaped electrochemical capacitor based on electrochemically reduced graphene oxide.
Chem Commun,
2013, 49: 291-293
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=A high-performance flexible fibre-shaped electrochemical capacitor based on electrochemically reduced graphene oxide&author=Li Y&author=Sheng K&author=Yuan W&publication_year=2013&journal=Chem Commun&volume=49&pages=291-293
[86]
Hu
Y,
Cheng
H,
Zhao
F, et al.
All-in-one graphene fiber supercapacitor.
Nanoscale,
2014, 6: 6448-6451
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=All-in-one graphene fiber supercapacitor&author=Hu Y&author=Cheng H&author=Zhao F&publication_year=2014&journal=Nanoscale&volume=6&pages=6448-6451
[87]
McDonough
JR,
Choi
JW,
Yang
Y, et al.
Carbon nanofiber supercapacitors with large areal capacitances.
Appl Phys Lett,
2009, 95: 243109
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Carbon nanofiber supercapacitors with large areal capacitances&author=McDonough JR&author=Choi JW&author=Yang Y&publication_year=2009&journal=Appl Phys Lett&volume=95&pages=243109
[88]
Kim
JH,
Kang
SH,
Zhu
K, et al.
Ni-NiO core-shell inverse opal electrodes for supercapacitors.
Chem Commun,
2011, 47: 5214-5216
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ni-NiO core-shell inverse opal electrodes for supercapacitors&author=Kim JH&author=Kang SH&author=Zhu K&publication_year=2011&journal=Chem Commun&volume=47&pages=5214-5216
[89]
Chen
S,
Ma
W,
Cheng
Y, et al.
Scalable non-liquid-crystal spinning of locally aligned graphene fibers for high-performance wearable supercapacitors.
Nano Energ,
2015, 15: 642-653
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Scalable non-liquid-crystal spinning of locally aligned graphene fibers for high-performance wearable supercapacitors&author=Chen S&author=Ma W&author=Cheng Y&publication_year=2015&journal=Nano Energ&volume=15&pages=642-653
[90]
Cheng
H,
Dong
Z,
Hu
C, et al.
Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors.
Nanoscale,
2013, 5: 3428-3434
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors&author=Cheng H&author=Dong Z&author=Hu C&publication_year=2013&journal=Nanoscale&volume=5&pages=3428-3434
[91]
Ma
Y,
Li
P,
Sedloff
JW, et al.
Conductive graphene fibers for wire-shaped supercapacitors strengthened by unfunctionalized few-walled carbon nanotubes.
ACS Nano,
2015, 9: 1352-1359
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Conductive graphene fibers for wire-shaped supercapacitors strengthened by unfunctionalized few-walled carbon nanotubes&author=Ma Y&author=Li P&author=Sedloff JW&publication_year=2015&journal=ACS Nano&volume=9&pages=1352-1359
[92]
Chen
Q,
Meng
Y,
Hu
C, et al.
MnO2-modified hierarchical graphene fiber electrochemical supercapacitor.
J Power Sources,
2014, 247: 32-39
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=MnO2-modified hierarchical graphene fiber electrochemical supercapacitor&author=Chen Q&author=Meng Y&author=Hu C&publication_year=2014&journal=J Power Sources&volume=247&pages=32-39
[93]
Wang
S,
Liu
N,
Su
J, et al.
Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs.
ACS Nano,
2017, 11: 2066-2074
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs&author=Wang S&author=Liu N&author=Su J&publication_year=2017&journal=ACS Nano&volume=11&pages=2066-2074
[94]
Wang
G,
Sun
X,
Lu
F, et al.
Flexible pillared graphene-paper electrodes for high-performance electrochemical supercapacitors.
Small,
2012, 8: 452-459
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Flexible pillared graphene-paper electrodes for high-performance electrochemical supercapacitors&author=Wang G&author=Sun X&author=Lu F&publication_year=2012&journal=Small&volume=8&pages=452-459
[95]
Yang
X,
Zhu
J,
Qiu
L, et al.
Bio-inspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors.
Adv Mater,
2011, 23: 2833-2838
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bio-inspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors&author=Yang X&author=Zhu J&author=Qiu L&publication_year=2011&journal=Adv Mater&volume=23&pages=2833-2838
[96]
Cheng
Y,
Lu
S,
Zhang
H, et al.
Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors.
Nano Lett,
2012, 12: 4206-4211
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors&author=Cheng Y&author=Lu S&author=Zhang H&publication_year=2012&journal=Nano Lett&volume=12&pages=4206-4211
[97]
El-Kady
MF,
Strong
V,
Dubin
S, et al.
Laser scribing of high-performance and flexible graphene-based electrochemical capacitors.
Science,
2012, 335: 1326-1330
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Laser scribing of high-performance and flexible graphene-based electrochemical capacitors&author=El-Kady MF&author=Strong V&author=Dubin S&publication_year=2012&journal=Science&volume=335&pages=1326-1330
[98]
Cong
HP,
Ren
XC,
Wang
P, et al.
Flexible graphene-polyaniline composite paper for high-performance supercapacitor.
Energ Environ Sci,
2013, 6: 1185
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Flexible graphene-polyaniline composite paper for high-performance supercapacitor&author=Cong HP&author=Ren XC&author=Wang P&publication_year=2013&journal=Energ Environ Sci&volume=6&pages=1185
[99]
Yoo
JJ,
Balakrishnan
K,
Huang
J, et al.
Ultrathin planar graphene supercapacitors.
Nano Lett,
2011, 11: 1423-1427
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ultrathin planar graphene supercapacitors&author=Yoo JJ&author=Balakrishnan K&author=Huang J&publication_year=2011&journal=Nano Lett&volume=11&pages=1423-1427
[100]
Liu
F,
Song
S,
Xue
D, et al.
Folded structured graphene paper for high performance electrode materials.
Adv Mater,
2012, 24: 1089-1094
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Folded structured graphene paper for high performance electrode materials&author=Liu F&author=Song S&author=Xue D&publication_year=2012&journal=Adv Mater&volume=24&pages=1089-1094
[101]
Li
N,
Lv
T,
Yao
Y, et al.
Compact graphene/MoS2 composite films for highly flexible and stretchable all-solid-state supercapacitors.
J Mater Chem A,
2017, 5: 3267-3273
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Compact graphene/MoS2 composite films for highly flexible and stretchable all-solid-state supercapacitors&author=Li N&author=Lv T&author=Yao Y&publication_year=2017&journal=J Mater Chem A&volume=5&pages=3267-3273
[102]
Lu
X,
Dou
H,
Gao
B, et al.
A flexible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors.
Electrochim Acta,
2011, 56: 5115-5121
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A flexible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors&author=Lu X&author=Dou H&author=Gao B&publication_year=2011&journal=Electrochim Acta&volume=56&pages=5115-5121
[103]
Pham
DT,
Lee
TH,
Luong
DH, et al.
Carbon nanotube-bridged graphene 3D building blocks for ultrafast compact supercapacitors.
ACS Nano,
2015, 9: 2018-2027
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Carbon nanotube-bridged graphene 3D building blocks for ultrafast compact supercapacitors&author=Pham DT&author=Lee TH&author=Luong DH&publication_year=2015&journal=ACS Nano&volume=9&pages=2018-2027
[104]
Du
P,
Hu
X,
Yi
C, et al.
Self-powered electronics by integration of flexible solid-state graphene-based supercapacitors with high performance perovskite hybrid solar cells.
Adv Funct Mater,
2015, 25: 2420-2427
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Self-powered electronics by integration of flexible solid-state graphene-based supercapacitors with high performance perovskite hybrid solar cells&author=Du P&author=Hu X&author=Yi C&publication_year=2015&journal=Adv Funct Mater&volume=25&pages=2420-2427
[105]
El-Kady
MF,
Ihns
M,
Li
M, et al.
Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage.
Proc Natl Acad Sci USA,
2015, 112: 4233-4238
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage&author=El-Kady MF&author=Ihns M&author=Li M&publication_year=2015&journal=Proc Natl Acad Sci USA&volume=112&pages=4233-4238
[106]
Xie
B,
Wang
Y,
Lai
W, et al.
Laser-processed graphene based micro-supercapacitors for ultrathin, rollable, compact and designable energy storage components.
Nano Energ,
2016, 26: 276-285
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Laser-processed graphene based micro-supercapacitors for ultrathin, rollable, compact and designable energy storage components&author=Xie B&author=Wang Y&author=Lai W&publication_year=2016&journal=Nano Energ&volume=26&pages=276-285
[107]
Xiong
Z,
Liao
C,
Han
W, et al.
Mechanically tough large-area hierarchical porous graphene films for high-performance flexible supercapacitor applications.
Adv Mater,
2015, 27: 4469-4475
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mechanically tough large-area hierarchical porous graphene films for high-performance flexible supercapacitor applications&author=Xiong Z&author=Liao C&author=Han W&publication_year=2015&journal=Adv Mater&volume=27&pages=4469-4475
[108]
Xie
J,
Sun
X,
Zhang
N, et al.
Layer-by-layer β-Ni(OH)2/graphene nanohybrids for ultraflexible all-solid-state thin-film supercapacitors with high electrochemical performance.
Nano Energ,
2013, 2: 65-74
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Layer-by-layer β-Ni(OH)2/graphene nanohybrids for ultraflexible all-solid-state thin-film supercapacitors with high electrochemical performance&author=Xie J&author=Sun X&author=Zhang N&publication_year=2013&journal=Nano Energ&volume=2&pages=65-74
[109]
Wu
ZS,
Tan
YZ,
Zheng
S, et al.
Bottom-up fabrication of sulfur-doped graphene films derived from sulfur-annulated nanographene for ultrahigh volumetric capacitance micro-supercapacitors.
J Am Chem Soc,
2017, 139: 4506-4512
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bottom-up fabrication of sulfur-doped graphene films derived from sulfur-annulated nanographene for ultrahigh volumetric capacitance micro-supercapacitors&author=Wu ZS&author=Tan YZ&author=Zheng S&publication_year=2017&journal=J Am Chem Soc&volume=139&pages=4506-4512
[110]
Ai
W,
Luo
Z,
Jiang
J, et al.
Nitrogen and sulfur codoped graphene: multifunctional electrode materials for high-performance Li-ion batteries and oxygen reduction reaction.
Adv Mater,
2014, 26: 6186-6192
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nitrogen and sulfur codoped graphene: multifunctional electrode materials for high-performance Li-ion batteries and oxygen reduction reaction&author=Ai W&author=Luo Z&author=Jiang J&publication_year=2014&journal=Adv Mater&volume=26&pages=6186-6192
[111]
Wu
ZS,
Winter
A,
Chen
L, et al.
Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors.
Adv Mater,
2012, 24: 5130-5135
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors&author=Wu ZS&author=Winter A&author=Chen L&publication_year=2012&journal=Adv Mater&volume=24&pages=5130-5135
[112]
Chen
X,
Chen
X,
Xu
X, et al.
Sulfur-doped porous reduced graphene oxide hollow nanosphere frameworks as metal-free electrocatalysts for oxygen reduction reaction and as supercapacitor electrode materials.
Nanoscale,
2014, 6: 13740-13747
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sulfur-doped porous reduced graphene oxide hollow nanosphere frameworks as metal-free electrocatalysts for oxygen reduction reaction and as supercapacitor electrode materials&author=Chen X&author=Chen X&author=Xu X&publication_year=2014&journal=Nanoscale&volume=6&pages=13740-13747
[113]
Dong
XC,
Xu
H,
Wang
XW, et al.
3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection.
ACS Nano,
2012, 6: 3206-3213
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection&author=Dong XC&author=Xu H&author=Wang XW&publication_year=2012&journal=ACS Nano&volume=6&pages=3206-3213
[114]
Choi
BG,
Yang
MH,
Hong
WH, et al.
3D macroporous graphene frameworks for supercapacitors with high energy and power densities.
ACS Nano,
2012, 6: 4020-4028
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=3D macroporous graphene frameworks for supercapacitors with high energy and power densities&author=Choi BG&author=Yang MH&author=Hong WH&publication_year=2012&journal=ACS Nano&volume=6&pages=4020-4028
[115]
Xu
Y,
Lin
Z,
Huang
X, et al.
Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films.
ACS Nano,
2013, 7: 4042-4049
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films&author=Xu Y&author=Lin Z&author=Huang X&publication_year=2013&journal=ACS Nano&volume=7&pages=4042-4049
[116]
Shi
JL,
Du
WC,
Yin
YX, et al.
Hydrothermal reduction of three-dimensional graphene oxide for binder-free flexible supercapacitors.
J Mater Chem A,
2014, 2: 10830
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hydrothermal reduction of three-dimensional graphene oxide for binder-free flexible supercapacitors&author=Shi JL&author=Du WC&author=Yin YX&publication_year=2014&journal=J Mater Chem A&volume=2&pages=10830
[117]
Shao
Y,
El-Kady
MF,
Lin
CW, et al.
3D freeze-casting of cellular graphene films for ultrahigh-power-density supercapacitors.
Adv Mater,
2016, 28: 6719-6726
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=3D freeze-casting of cellular graphene films for ultrahigh-power-density supercapacitors&author=Shao Y&author=El-Kady MF&author=Lin CW&publication_year=2016&journal=Adv Mater&volume=28&pages=6719-6726
[118]
Deville
S.
Freeze-casting of porous ceramics: a review of current achievements and issues.
Adv Eng Mater,
2008, 10: 155-169
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Freeze-casting of porous ceramics: a review of current achievements and issues&author=Deville S&publication_year=2008&journal=Adv Eng Mater&volume=10&pages=155-169
[119]
Yu
P,
Zhao
X,
Huang
Z, et al.
Free-standing three-dimensional graphene and polyaniline nanowire arrays hybrid foams for high-performance flexible and lightweight supercapacitors.
J Mater Chem A,
2014, 2: 14413-14420
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Free-standing three-dimensional graphene and polyaniline nanowire arrays hybrid foams for high-performance flexible and lightweight supercapacitors&author=Yu P&author=Zhao X&author=Huang Z&publication_year=2014&journal=J Mater Chem A&volume=2&pages=14413-14420
[120]
Jurewicz
K,
Vix-Guterl
C,
Frackowiak
E, et al.
Capacitance properties of ordered porous carbon materials prepared by a templating procedure.
J Phys Chem Solids,
2004, 65: 287-293
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Capacitance properties of ordered porous carbon materials prepared by a templating procedure&author=Jurewicz K&author=Vix-Guterl C&author=Frackowiak E&publication_year=2004&journal=J Phys Chem Solids&volume=65&pages=287-293
[121]
álvarez
S,
Blanco-López
MC,
Miranda-Ordieres
AJ, et al.
Electrochemical capacitor performance of mesoporous carbons obtained by templating technique.
Carbon,
2005, 43: 866-870
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Electrochemical capacitor performance of mesoporous carbons obtained by templating technique&author=álvarez S&author=Blanco-López MC&author=Miranda-Ordieres AJ&publication_year=2005&journal=Carbon&volume=43&pages=866-870
[122]
Li
HQ,
Luo
JY,
Zhou
XF, et al.
An ordered mesoporous carbon with short pore length and its electrochemical performances in supercapacitor applications.
J Electrochem Soc,
2007, 154: A731
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=An ordered mesoporous carbon with short pore length and its electrochemical performances in supercapacitor applications&author=Li HQ&author=Luo JY&author=Zhou XF&publication_year=2007&journal=J Electrochem Soc&volume=154&pages=A731
[123]
Zhi
J,
Zhao
W,
Liu
X, et al.
Highly conductive ordered mesoporous carbon based electrodes decorated by 3D graphene and 1D silver nanowire for flexible supercapacitor.
Adv Funct Mater,
2014, 24: 2013-2019
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Highly conductive ordered mesoporous carbon based electrodes decorated by 3D graphene and 1D silver nanowire for flexible supercapacitor&author=Zhi J&author=Zhao W&author=Liu X&publication_year=2014&journal=Adv Funct Mater&volume=24&pages=2013-2019
[124]
Qin
T,
Wan
Z,
Wang
Z, et al.
3D flexible O/N co-doped graphene foams for supercapacitor electrodes with high volumetric and areal capacitances.
J Power Sources,
2016, 336: 455-464
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=3D flexible O/N co-doped graphene foams for supercapacitor electrodes with high volumetric and areal capacitances&author=Qin T&author=Wan Z&author=Wang Z&publication_year=2016&journal=J Power Sources&volume=336&pages=455-464