Thermal energy storage plays an important role in energy conservation
and reducing CO2 emissions. Thermal energy storage involves
sensible heat storage, latent heat storage and thermochemical heat
storage. Compared with sensible heat storage, latent heat storage
and thermochemical heat storage benefits of their high energy storage
densities, which helps to reduce the initial cost of the construction
of heat storage systems. However, the thermal conductivities of the
phase change and thermochemical reaction materials are usually lower
than 1 W m
国家重点基础研究发展计划(2013CB228303)
[1] Sharma A, Tyagi V V, Chen C R, et al. Review on thermal energy storage with phase change materials and applications. Renew Sust Energy Rev, 2009, 13: 318-345 CrossRef Google Scholar
[2] Hauer A. Sorption theory for thermal energy storage. In: Paksoy H, ed. Thermal Energy Storage for Sustainable Energy Consumption. Netherlands: Springer. 2007, 234: 393–408. Google Scholar
[3] Pohlmann C, R?ntzsch L, Kalinichenka S, et al. Hydrogen storage properties of compacts of melt-spun Mg90Ni10 flakes and expanded natural graphite. J Alloy Compd, 2011, 509: S625-S628 CrossRef Google Scholar
[4] Bugaje I M. Enhancing the thermal response of latent heat storage systems. Int J Energy Res, 1997, 21: 759-766 CrossRef Google Scholar
[5] Koh J C Y, Stevens R L. Enhancement of cooling effectiveness by porous materials in coolant passage. J Heat Trans, 1975, 97: 309-311 CrossRef Google Scholar
[6] Chow L C, Zhong J K, Beam J E. Thermal conductivity enhancement for phase change storage media. Int Commun Heat Mass, 1996, 23: 91-100 CrossRef Google Scholar
[7] Fukai J, Hamada Y, Morozumi Y, et al. Effect of carbon-fiber brushes on conductive heat transfer in phase change materials. Int J Heat Mass Transfer, 2002, 45: 4781-4792 CrossRef Google Scholar
[8] Fukai J, Hamada Y, Morozumi Y, et al. Improvement of thermal characteristics of latent heat thermal energy storage units using carbon-fiber brushes: Experiments and modeling. Int J Heat Mass Transfer, 2003, 46: 4513-4525 CrossRef Google Scholar
[9] Elgafy A, Lafdi K. Effect of carbon nanofiber additives on thermal behavior of phase change materials. Carbon, 2005, 43: 3067-3074 CrossRef Google Scholar
[10] Hoogendoorn C J, Bart G C J. Performance and modelling of latent heat stores. Sol Energy, 1992, 48: 53-58 CrossRef Google Scholar
[11] Mauran S, Prades P, L’Haridon F. Heat and mass transfer in consolidated reacting beds for thermochemical systems. Heat Recovery Systems CHP, 1993, 13: 315-319 CrossRef Google Scholar
[12] Tong X, Khan J A, RuhulAmin M. Enhancement of heat transfer by inserting a metal matrix into a phase change material. Numer Heat Tr A-Appl, 1996, 30: 125-141 CrossRef Google Scholar
[13] Py X, Olives R, Mauran S. Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material. Int J Heat Mass Transfer, 2001, 44: 2727-2737 CrossRef Google Scholar
[14] Pincemin S, Olives R, Py X, et al. Highly conductive composites made of phase change materials and graphite for thermal storage. Sol Energy Mat Sol C, 2008, 92: 603-613 CrossRef Google Scholar
[15] Lafdi K, Mesalhy O, Elgafy A. Graphite foams infiltrated with phase change materials as alternative materials for space and terrestrial thermal energy storage applications. Carbon, 2008, 46: 159-168 CrossRef Google Scholar
[16] Pincemin S, Py X, Olives R, et al. Elaboration of conductive thermal storage composites made of phase change materials and graphite for solar plant. J Sol Energy, 2007, 130: 011005 Google Scholar
[17] Siahpush A, O’Brien J, Crepeau J. Phase change heat transfer enhancement using copper porous foam. J Heat Trans, 2008, 130: 082301 CrossRef Google Scholar
[18] Chaise A, de Rango P, Marty P, et al. Enhancement of hydrogen sorption in magnesium hydride using expanded natural graphite. Int J Hydrogen Energyy, 2009, 34: 8589-8596 CrossRef Google Scholar
[19] Mellouli S, Dhaou H, Askri F, et al. Hydrogen storage in metal hydride tanks equipped with metal foam heat exchanger. Int J Hydrogen Energy, 2009, 34: 9393-9401 CrossRef Google Scholar
[20] Laurencelle F, Goyette J. Simulation of heat transfer in a metal hydride reactor with aluminium foam. Int J Hydrogen Energy, 2007, 32: 2957-2964 CrossRef Google Scholar
[21] Tsai M L, Yang T S. On the selection of metal foam volume fraction for hydriding time minimization of metal hydride reactors. Int J Hydrogen Energy, 2010, 35: 11052-11063 CrossRef Google Scholar
[22] Bhattacharya A, Calmidi V V, Mahajan R L. Thermophysical properties of high porosity metal foams. Int J Heat Mass Transfer, 2002, 45: 1017-1031 CrossRef Google Scholar
[23] Boomsma K, Poulikakos D, Zwick F. Metal foams as compact high performance heat exchangers. Mech Mater, 2003, 35: 1161-1176 CrossRef Google Scholar
[24] Zhao C Y, Kim T, Lu T J, et al. Thermal transport in high porosity cellular metal foams. J Thermophys Heat Tr, 2004, 18: 309-317 CrossRef Google Scholar
[25] Zhao C Y, Lu T J, Hodson H P. Thermal radiation in ultralight metal foams with open cells. Int J Heat Mass Transfer, 2004, 47: 2927-2939 CrossRef Google Scholar
[26] Zhao C Y, Lu T J, Hodson H P. Natural convection in metal foams with open cells. Int J Heat Mass Transfer, 2005, 48: 2452-2463 CrossRef Google Scholar
[27] Zhao C Y, Lu T J, Hodson H P, et al. The temperature dependence of effective thermal conductivity of open-celled steel alloy foams. Mater Sci Eng A, 2004, 367: 123-131 CrossRef Google Scholar
[28] Zhao C Y, Lu W, Tassou S A. Flow boiling heat transfer in horizontal metal-foam tubes. J Heat Trans, 2009, 131: 121002 CrossRef Google Scholar
[29] Zhao C Y, Tassou S A, Lu T J. Analytical considerations of thermal radiation in cellular metal foams with open cells. Int J Heat Mass Transfer, 2008, 51: 929-940 CrossRef Google Scholar
[30] Jemni A, Nasrallah S B, Lamloumi J. Experimental and theoretical study of ametal-hydrogen reactor. Int J Hydrogen Energy, 1999, 24: 631-644 CrossRef Google Scholar
[31] Nasrallah S B, Jemni A. Heat and mass transfer models in metal-hydrogen reactor. Int J Hydrogen Energy, 1997, 22: 67-76 CrossRef Google Scholar
[32] Chaise A, Marty P, Rango P, et al. A simple criterion for estimating the effect of pressure gradients during hydrogen absorption in a hydride reactor. Int J Heat Mass Transfer, 2009, 52: 4564-4572 CrossRef Google Scholar
[33] Chaise A, de Rango P, Marty P, et al. Experimental and numerical study of a magnesium hydride tank. Int J Hydrogen Energy, 2010, 35: 6311-6322 CrossRef Google Scholar
[34] Askri F, Jemni A, Ben Nasrallah S. Study of two-dimensional and dynamic heat and mass transfer in a metal–hydrogen reactor. Int J Hydrogen Energy, 2003, 28: 537-557 CrossRef Google Scholar
[35] Boomsma K, Poulikakos D. On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam. Int J Heat Mass Transfer, 2001, 44: 827-836 CrossRef Google Scholar
[36] Delhomme B, de Rango P, Marty P, et al. Large scale magnesium hydride tank coupled with an external heat source. Int J Hydrogen Energy, 2012, 37: 9103-9111 CrossRef Google Scholar
图1
实验系统示意图
图2
反应器物理模型. (a) 反应器结构简图; (b) 测点在计算域中的分布位置
图3
石蜡和六水氯化钙的温度变化. (a) 石蜡; (b) 六水氯化钙
图4
相变材料与加热面间温差的变化. (a) 石蜡; (b) 六水氯化钙
图5
不同样品中温差
图6
两种情况下反应床的温度变化规律
图7
两种情况下系统放热功率的对比
图8
传热流体温度对反应时间的影响
相变材料 |
石蜡(RT27) |
六水氯化钙 |
硝酸钠 |
熔点 |
25~28 |
29 |
306.8 |
热导率 (W m |
固态: 0.24 液态: 0.15 |
固态: 1.09 液态: 0.54 |
固态: 0.50 液态: 0.553 (329℃) |
相变潜热 (kJ
kg |
179 |
190.8 |
173.3 |
密度 |
固态: 840 液态: 750 |
固态: 1710 液态: 1560 |
固态: 2261 液态: 2042 |
黏度 |
0.0190 (50℃) |
0.0225 |
0.00264 (液态, 329℃) |
石蜡(RT27) |
六水氯化钙 |
硝酸钠 |
|
材料 |
铜 |
合金钢 |
合金钢 |
密度 |
0.445 |
0.889 |
0.445 |
孔隙率 (%) |
95 |
90 |
95 |
PPI |
10 |
20 |
30 |
参数 |
设定值 |
参数 |
设定值 |
C |
1010 s |
Lgas |
0.03 m |
C |
10 s |
M |
0.002 kg mol |
C |
1545 J kg |
||
14000 J kg |
V |
1×10 |
|
E |
130 kJ mol |
wt |
0.076 |
E |
41 kJ mol |
0.08189 kg m |
|
1738 kg m |
|||
K |
1.6×10 |
0.5 |
|
Lheat |
0.03 m |
8.9×10 |
Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有
京ICP备18024590号-1