Frontier physics problems related to the origin of cosmic rays

logo

Chinese Science Bulletin, Volume 61, Issue 11: 1188-1209(2016) https://doi.org/10.1360/N972015-00702

Frontier physics problems related to the origin of cosmic rays

More info
  • ReceivedJul 1, 2015
  • AcceptedOct 8, 2015

Abstract

Ever since the discovery of cosmic rays by Austrian physicist Victor Hess with high altitude balloon experiment in 1912, many fundamental particles as well as their interactions have been discovered in the research of cosmic rays. The first evidence of neutrino oscillation was obtained from the solar neutrino and atmospheric neutrino experiments even though particle physics has been dominated by accelerator experiments. To this day, the highest energy particle is known from the observation of cosmic rays, far beyond the reach of man-made particle accelerator. The origin, acceleration and propagation of cosmic rays are century-old scientific problems. From the studies of cosmic rays, the high energy gamma astronomy, high energy neutrino astronomy and ultra-high energy cosmic rays astronomy have been developed. In order to solve the origin problem, it is helpful to precisely measure the chemical composition and energy spectrum of cosmic rays, to observe and locate the sources of high energy gamma rays, neutrinos and ultra-high energy cosmic rays. Recently, with a new generation of space borne and ground based experiments in operation, great progresses have been made in cosmic ray spectrum and the anisotropy measurement. The fine structure of spectral hardening for primary nuclei at 200 GV was observed by ATIC-2, CREAM and PAMELA. And Positron/electron excesses were discovered by PAMELA and ATIC. The latest results by AMS02 experiment also confirmed the spectral hardening and positron excess with unprecedented precision. In the very high energy range, the knee structure of light elements below PeV has been observed by ARGO-YBJ/LHAASO-WFCTA hybrid experiment with a rather small systematic uncertainty. On the other hand, KASCADE experiment observed a knee at 80 TeV for heavy component and an ankle at 200 PeV for light component. By combining the anisotropy results from Tibet ASg, ARGO-YBJ in northern hemisphere and IceTop in southern hemisphere, a global picture on galactic cosmic ray anisotropy from TeV to PeV energies are now obtained. In the field of high energy neutrino observation, the astrophysical neutrinos with a rather hard spectrum from 30 TeV to 2 PeV have been discovered at a 7.2 significance by IceCube experiment. As for the ultrahigh energy cosmic ray spectrum, AUGER and TA have performed very high precision measurement and their results agree with each other very well. It is worth to note that the composition measurements do not agree with each other when approaching the extremely high energy end. Apparently, GZK cutoff is clearly observed with high significant level. However, alternative explanation, such as the limitation of acceleration power by sources remains possible before the composition is well understood. All these results shed new lights on unveiling the origin of cosmic rays. Besides, these studies are important means to detect the dark matter particle and to explore the evolution of the universe and new laws of physics.


Funded by

国家自然科学基金资助项目(11135010)


Acknowledgment

本文是根据香山会议第518次会议(宇宙线起源的天文和物理交叉研究前沿)的主题评述报告整理而成. 感谢中国科学院高能物理研究所冯朝阳, 博士生田珍和王振在绘图及文献引用方面提供的帮助.


References

[1] 胡 红波, 韩 金林. 宇宙线的百年研究. 物理, 2012, 41: 45-47 Google Scholar

[2] Davis R, Harmer D S, Hoffman K C. Search for neutrinos from the sun. Phys Rev Lett, 1968, 20: 1205-1209 CrossRef Google Scholar

[3] Hirata K, Kajita T, Koshiba M, et al. Observation of a neutrino burst from the supernova SN1987A. Phys Rev Lett, 1987, 58: 1490-1493 CrossRef Google Scholar

[4] Ryan S G, Beers T C, Olive K A, et al. Primordial lithium and big bang nucleosynthesis. Astrophys J, 2000, 530: L57-L60 CrossRef Google Scholar

[5] Piau L, Beers T C, Balsara D S, et al. From first stars to the spite plateau: A possible reconciliation of halo stars observations with predictions from big bang nucleosynthesis. Astrophys J, 2006, 653: 300-315 CrossRef Google Scholar

[6] Salem M, Bryan G L, Hummels C. Cosmological simulations of galaxy formation with cosmic rays. Astrophys J, 2014, 797: L18-L24 CrossRef Google Scholar

[7] Gaisser T K. Cosmic Rays and Particle Physics. Cambridge: Cambridge University Press. 1990, Google Scholar

[8] Gaisser T K, Stanev T. High-energy cosmic rays. Nucl Phys A, 2006, 777: 98-110 CrossRef Google Scholar

[9] Zobeck M V. Handbook of Space Astronomy and Astrophysics. 2nd ed. Cambridge: Cambridge University Press. 1990, Google Scholar

[10] Engelmann J J, Ferrando P, Soutoul A, et al. Charge composition and energy spectra of cosmic-ray nuclei for elements from Be to NI- Results from HEAO-3-C2. Astron Astrophys, 1990, 233: 96-111 Google Scholar

[11] Alcaraz J, Alvisi D, Alpat B, et al. Cosmic protons. Phys Lett B, 2000, 472: 215-226 CrossRef Google Scholar

[12] Alcaraz J, Alpat B, Ambrosi G, et al. Helium in near Earth orbit. Phys Lett B, 2000, 494: 193-202 CrossRef Google Scholar

[13] Binns W R, Wiedenbeck M E, Arnould M, et al. Cosmic-ray neon, wolf-rayet stars, and the superbubble origin of galactic cosmic rays. Astrophys J, 2005, 634: 351-364 CrossRef Google Scholar

[14] Garcia-Munoz M, Mason G M, Simpson J A. The age of the galactic cosmic rays derived from the abundance of Be10. Astrophys J, 1977, 217: 859-877 CrossRef Google Scholar

[15] Stone E C, Cohen C M S, Cook W R, et al. The cosmic-ray isotope spectrometer for the advanced composition explorer. Space Sci Rev, 1998, 86: 357-408 CrossRef Google Scholar

[16] Grigorov N L, Gubin Y V, Jakovlev B M, et al. Energy spectrum of primary cosmic rays in the 1011–1015 eV according to the data of proton-4 measurements. In: The International Cosmic Ray Conference. 1971, 1: 170. Google Scholar

[17] Amenomori M, Bi X J, Chen D, et al. The all-particle spectrum of primary cosmic rays in the wide energy range from 1014 to 1017 eV observed with the Tibet-iii air-shower array. Astrophys J, 2008, 678: 1165-1179 CrossRef Google Scholar

[18] Apel W D, Arteaga J C, Badea A F, et al. Energy spectra of elemental groups of cosmic rays: Update on the KASCADE unfolding analysis. Astropart Phys, 2009, 31: 86-91 CrossRef Google Scholar

[19] Nagano M, Hara T, Hatano Y, et al. Energy spectrum of primary cosmic rays between 1014.5 and 1018 eV. J Phys G, 1984, 10: 1295-1310 CrossRef Google Scholar

[20] Takeda M, Hayashida N, Honda K, et al. Extension of the cosmic-ray energy spectrum beyond the predicted greisen-zatsepin-kuz’min cutoff. Phys Rev Lett, 1998, 81: 1163-1166 CrossRef Google Scholar

[21] Abbasi R U, Abu-Zayyad T, Amann J F, et al. Measurement of the flux of ultrahigh energy cosmic rays from monocular observations by the high resolution fly’s eye experiment. Phys Rev Lett, 2004, 92: 151101 CrossRef Google Scholar

[22] Abbasi R U, Abu-Zayyad T, Allen M, et al. First observation of the Greisen-Zatsepin-Kuzmin suppression. Phys Rev Lett, 2008, 100: 101101 CrossRef Google Scholar

[23] Yamamoto T. The UHECR spectrum measured at the Pierre Auger Observatory and its astrophysical implications. In: The International Cosmic Ray Conference. 2008, 4: 335. Google Scholar

[24] Telescope Array Collaboration. The hybrid energy spectrum of TA’s middle drum detector and surface array. 2014, arXiv:1410.3151. Google Scholar

[25] Abbasi R, Abdou Y, Abu-Zayyad T, et al. All-particle cosmic ray energy spectrum measured with 26 IceTop stations. Astropart Phys, 2013, 44: 40-58 CrossRef Google Scholar

[26] Alcaraz J, Alvisi D, Alpat B, et al. Protons in near earth orbit. Phys Lett B, 2000, 472: 215-226 CrossRef Google Scholar

[27] Consolandi C. Primary cosmic ray proton flux measured by AMS-02. 2014, arXiv:1402.0467. Google Scholar

[28] Sanuki T, Motoki M, Matsumoto H, et al. Precise measurement of cosmic-ray proton and helium spectra with the BESS spectrometer. Astrophys J, 2000, 545: 1135-1142 CrossRef Google Scholar

[29] Panov A D, Adams J H, Ahn H S, et al. The results of ATIC-2 experiment for elemental spectra of cosmic rays. 2006, arXiv:astro-ph/0612377. Google Scholar

[30] Ahn H S, Allison P, Bagliesi M G, et al. Discrepant hardening bserved in cosmic-ray elemental spectra. Astrophys J, 2010, 714: 89-93 CrossRef Google Scholar

[31] Adriani O, Barbarino G C, Bazilevskaya G A, et al. PAMELA measurements of cosmic-ray proton and helium spectra. Science, 2011, 332: 69-72 CrossRef Google Scholar

[32] Apanasenko A V, Sukhadolskaya V A, Derbina V A, et al. Composition and energy spectra of cosmic-ray primaries in the energy range 1013–1015 eV/particle observed by Japanese-Russian joint balloon experiment. Asrtopart Phys, 2001, 16: 13-46 CrossRef Google Scholar

[33] Beozio M, Bonvicini , Schiavon P, et al. The cosmic-ray proton and helium spectra measured with the CAPRICE98 balloon experiment. Astropart Phys, 2003, 19: 583-604 CrossRef Google Scholar

[34] Asakimori K, Burnett T H, Cherry M L, et al. Cosmic-ray proton and helium spectra: Results from the JACEE Experiment. Astrophys J, 1998, 502: 278-283 CrossRef Google Scholar

[35] Bartoli B, Bernardini P, Bi X J, et al. Light-component spectrum of the primary cosmic rays in the multi-TeV region measured by the ARGO-YBJ experiment. Phys Rev D, 2012, 85: 92005 CrossRef Google Scholar

[36] Bartoli B, Bernardini P, Bi X, et al. Energy spectrum of cosmic protons and helium nuclei by a hybrid measurement at 4300 m a. s. l. Chin Phys C, 2014, 38: 045001 CrossRef Google Scholar

[37] Aguilar M, Aisa D, Alpat B, et al. Electron and positron fluxes in primary cosmic rays measured with the alpha magnetic spectrometer on the international space station. Phys Rev Lett, 2014, 113: 121102 CrossRef Google Scholar

[38] Alcaraz J, Alpat B, Ambrosi G, et al. Leptons in near earth orbit. Phys Lett B, 2000, 484: 10-22 CrossRef Google Scholar

[39] Adriani O, Barbarino G C, Bazilevskaya G A, et al. An anomalous positron abundance in cosmic rays with energies 1. 5–100 GeV. Nature, 2009, 458: 607-609 CrossRef Google Scholar

[40] Barwick S W, Beatty J J, Bower C R, et al. The energy spectra and relative abundances of electrons and positrons in the galactic cosmic radiation. Astrophys J, 1998, 498: 779-789 CrossRef Google Scholar

[41] Boezio M, Carlson P, Francke T, et al. The cosmic-ray electron and positron spectra measured at 1 AU during solar minimum activity. Astrophys J, 2000, 532: 653-669 CrossRef Google Scholar

[42] Chang J, Adams J H, Ahn H S, et al. An excess of cosmic ray electrons at energies of 300–800 GeV. Nature, 2008, 456: 362-365 CrossRef Google Scholar

[43] Ackermann M, Ajello M, Atwood W B, et al. Fermi LAT observations of cosmic-ray electrons from 7 GeV to 1 TeV. Phys Rev D, 2010, 82: 092004 CrossRef Google Scholar

[44] Aharonian F, Akhperjanian A G, Barres de Almeida U, et al. Energy spectrum of cosmic-ray electrons at TeV energies. Phys Rev Lett, 2008, 101: 261104 CrossRef Google Scholar

[45] Torii S, Tamura T, Tateyama N, et al. The energy spectrum of cosmic-ray electrons from 10 to 100 GeV observed with a highly granulated imaging calorimeter. Astrophys J, 2001, 559: 973-984 CrossRef Google Scholar

[46] Adriani O, Barbarino G C, Bazilevskaya G A, et al. PAMELA results on the cosmic-ray antiproton flux from 60 MeV to 180 GeV in kinetic energy. Phys Rev Lett, 2010, 105: 121101 CrossRef Google Scholar

[47] Alcaraz J, Alvisi D, Alpat B, et al. Protons in near earth orbit. Phys Lett B, 2000, 472: 215-226 CrossRef Google Scholar

[48] Maeno E, Orito S, Matsunaga H, et al. Successive measurements of cosmic-ray antiproton spectrum in a positive phase of the solar cycle. Astropart Phys, 2001, 16: 121-128 CrossRef Google Scholar

[49] Asaoka Y, Shikaze Y, Abe K, et al. Measurements of cosmic-ray low-energy antiproton and proton spectra in a transient period of solar field reversal. Phys Rev Lett, 2002, 88: 051101 CrossRef Google Scholar

[50] Boezio M, Bonvicini V, Schiavon P, et al. The cosmic-ray antiproton flux between 3 and 49 GeV. Astrophys J, 2001, 561: 787-799 CrossRef Google Scholar

[51] Neronov A, Semikoz D. Neutrinos from extra-large hadron collider in the milky way. 2014, arXiv:1412.1690. Google Scholar

[52] Abbasi R, Abdou Y, Abu-Zayyad T, et al. Measurement of the atmospheric neutrino energy spectrum from 100 GeV to 400 TeV with IceCube. Phys Rev D, 2011, 83: 012001 CrossRef Google Scholar

[53] Aarsten M G, Abbasi R, Abdou Y, et al. Measurement of the atmospheric nue flux in IceCube. Phys Rev Lett, 2013, 110: 151105 CrossRef Google Scholar

[54] Abbasi R, Abdou Y, Abu-Zayyad T, et al. The energy spectrum of atmospheric neutrinos between 2 and 200 TeV with the AMANDA-II detector. Astropart Phys, 2010, 34: 48-58 CrossRef Google Scholar

[55] Adrián-Martínez S, Albert A, Al Samarai I, et al. Measurement of the atmospheric num energy spectrum from 100 GeV to 200 TeV with the ANTARES telescope. 2013, arXiv:1308.1599. Google Scholar

[56] Frejus Collaboration . Determination of the atmospheric neutrino spectra with Frejus detector. Zeitschrift für Physik C Part Fields, 1995, 66: 417-428 CrossRef Google Scholar

[57] Aartsen M G, Ackermann M, Adams J, et al. Observation of high-energy astrophysical neutrinos in three years of IceCube data. Phys Rev Lett, 2014, 113: 101101 CrossRef Google Scholar

[58] Aartsen M G, Ackermann M, Adams J, et al. Atmospheric and astrophysical neutrinos above 1 TeV interacting in IceCube. Phys Rev D, 2015, 91: 022001 CrossRef Google Scholar

[59] Thoudam S, Horandel J R. Nearby supernova remnants and the cosmic ray spectral hardening at high energies. Mon Not R Astron Soc, 2012, 421: 1209-1214 CrossRef Google Scholar

[60] Biermann P L, Becker J K, Dreyer J, et al. The origin of cosmic rays: Explosions of massive stars with magnetic winds and their supernova mechanism. Astrophys J, 2010, 725: 184-187 CrossRef Google Scholar

[61] Zatsepin V L, Sokolskaya N V. Three component model of cosmic ray spectra from 10 GeV to 100 PeV. Astron Astrophys, 2006, 458: 1-5 CrossRef Google Scholar

[62] Yuan Q, Zhang B, Bi X J. Cosmic ray spectral hardening due to dispersion in the source injection spectra. Phys Rev D, 2011, 84: 043002 CrossRef Google Scholar

[63] Tomassetti N. Origin of the cosmic-ray spectral hardening. Astrophys J, 2012, 752: L13-L18 CrossRef Google Scholar

[64] Jin C, Guo Y Q, Hu H B. Spatial dependent diffusion of cosmic rays and the excess of primary electrons defived from high precision measurement by AMS-02. 2012, arxiv:1504.06903. Google Scholar

[65] Kulikov G V, Kristiansen G B. On the size spectrum of extensive air showers. J Exp Theor Phys, 1958, 35: 441-444 Google Scholar

[66] Linsley J. Primary cosmic rays of energy 1017 to 1020 eV, the energy spectrum and arrival directions. In: The International Cosmic Ray Conference. 1963, 4: 77. Google Scholar

[67] Greisen K. End to the cosmic-ray spectrum? Phys Rev Lett, 1966, 16: 748. Google Scholar

[68] Zatsepin G T, Kuz’min V A. Upper limit of the spectrum of cosmic rays. J Exper Theor Phys Lett, 1966, 4: 78 Google Scholar

[69] Hillas A M. TOPICAL REVIEW: Can diffusive shock acceleration in supernova remnants account for high-energy galactic cosmic rays? J Phys G Nucl Phys, 2005, 31: 95–131. Google Scholar

[70] Wang B, Yuan Q, Fan C, et al. A study on the sharp knee and fine structures of cosmic ray spectra. Sci China Phys Mech Astron, 2010, 53: 842-847 CrossRef Google Scholar

[71] H?randel J R. On the knee in the energy spectrum of cosmic rays. Astropart Phys, 2003, 19: 193-220 CrossRef Google Scholar

[72] Bird D J, Corbató S C, Dai H Y, et al. Evidence for correlated changes in the spectrum and composition of cosmic rays at extremely high energies. Phys Rev Lett, 1993, 71: 3401-3404 CrossRef Google Scholar

[73] Krymskii G F. A regular mechanism for the acceleration of charged particles on the front of a shock wave. DoSSR, 1977, 234: 1306 Google Scholar

[74] Bell A R. The acceleration of cosmic rays in shock fronts. I. Mon Not R Astron Soc, 1978, 182: 147-156 CrossRef Google Scholar

[75] Bell A R. The acceleration of cosmic rays in shock fronts. II. Mon Not R Astron Soc, 1978, 182: 443-455 CrossRef Google Scholar

[76] Blandford R D, Ostriker J P. Particle acceleration by astrophysical shocks. Astrophys J, 1978, 221: 29-32 CrossRef Google Scholar

[77] Fermi E. Galactic magnetic fields and the origin of cosmic radiation. Astrophys J, 1954, 119: 1 CrossRef Google Scholar

[78] Lagage P O, Cesarsky C J. The maximum energy of cosmic rays accelerated by supernova shocks. Astron Astrophys, 1983, 125: 249-257 Google Scholar

[79] Bell A R, Lucek S G. Cosmic ray acceleration to very high energy through the non-linear amplification by cosmic rays of the seed magnetic field. Mon Not R Astron Soc, 2001, 321: 433-438 CrossRef Google Scholar

[80] Berezhko E G, Volk H J. Spectrum of cosmic rays produced in supernova remnants. Astrophys J, 2007, 661: 175-178 CrossRef Google Scholar

[81] Goldreich P, Sridhar S. Toward a theory of interstellar turbulence 2: Strong alfvenic turbulence. Astrophys J, 1995, 438: 763-775 CrossRef Google Scholar

[82] Yan H R, Lazarian A. Cosmic-ray scattering and streaming in compressible magnetohydrodynamic turbulence. Astrophys J, 2004, 614: 757-769 CrossRef Google Scholar

[83] Baade W, Zwicky F. Comic rays from super-novae. Phys Rev, 1934, 45: 138 Google Scholar

[84] Ackermann M, Ajello M, Allafort A, et al. Detection of the characteristic pion-decay signature in supernova remnants. Science, 2013, 339: 807-811 CrossRef Google Scholar

[85] Aharonian F, Akhperjanian A G, Bazer-Bachi A R, et al. Discovery of very-high-energy gamma-rays from the Galactic Centre ridge. Nature, 2006, 439: 695-698 CrossRef Google Scholar

[86] Ackermann M, Ajello M, Atwood W B, et al. Fermi-LAT observations of the diffuse gamma-ray emission: Implications for cosmic rays and the interstellar medium. Astrophys J, 2012, 750: 3-35 CrossRef Google Scholar

[87] Abdo A A, Allen B, Aune T, et al. A measurement of the spatial distribution of diffuse TeV gamma-ray emission from the galactic plane with Milagro. Astrophys J, 2008, 688: 1078-1083 CrossRef Google Scholar

[88] Di Sciascio G. Main physics results of the ARGO-YBJ experiment. Int J Modern Phys D, 2014, 23: 1430019 CrossRef Google Scholar

[89] Abramowski A, Aharonian F, Ait Benkhali F, et al. Diffuse Galactic gamma-ray emission with HESS. Phys Rev D, 2014, 90: 122007 CrossRef Google Scholar

[90] Guo Y Q, Hu H B, Yuan Q, et al. Pinpointing the knee of cosmic rays with diffuse PeV gamma-rays and neutrinos. Astrophys J, 2014, 795: 100-106 CrossRef Google Scholar

[91] Fox D B, Kashiyama K, Mészarós P. Sub-PeV neutrinos from TeV unidentified sources in the galaxy. Astrophys J, 2013, 774: 74-80 CrossRef Google Scholar

[92] Neronov A, Semikoz D, Tchernin C. PeV neutrinos from interactions of cosmic rays with the interstellar medium in the Galaxy. Phys Rev D, 2014, 89: 103002 CrossRef Google Scholar

[93] Guo Y Q, Hu H B, Tian Z. On the contribution of “fresh” cosmic rays to the excesses of secondary particles. 2014, axRiv:1412.8590. Google Scholar

[94] Rachen J P, Biermann P L. Extragalactic ultra-high energy cosmic-rays - part one - contribution from hot spots in Fr-II Radio galaxies. Astron Astrophys, 1993, 272: 161-175 Google Scholar

[95] Biermann P L. Topical Review: The origin of the highest energy cosmic rays. J Phys G, 1997, 23: 1-27 Google Scholar

[96] Henri G, Pelletier G, Petrucci P O, et al. Active galactic nuclei as high energy engines. Astropart Phys, 1999, 11: 347-356 CrossRef Google Scholar

[97] Halzen F, Hooper D. High-energy neutrino astronomy: The cosmic ray connection. Rep Prog Phys, 2002, 65: 1025-1078 CrossRef Google Scholar

[98] Waxman E. Cosmological gamma-ray bursts and the highest energy cosmic rays. Phys Rev Lett, 1995, 75: 386-389 CrossRef Google Scholar

[99] Vietri M. The acceleration of ultra-high-energy cosmic rays in gamma-ray bursts. Astrophys J, 1995, 453: 883-889 CrossRef Google Scholar

[100] de Gouveia Dal Pino E M, Lazarian A. Ultra-high-energy cosmic-ray acceleration by magnetic reconnection in newborn accretion-induced collapse pulsars. Astrophys J, 2000, 536: 31-34 CrossRef Google Scholar

[101] Wibig T, Wolfendale A W. Ultra-high energy cosmic rays from transient extragalactic sources. J Phys G, 2004, 30: 525-542 CrossRef Google Scholar

[102] Wibig T, Wolfendale A W. Ultra high energy cosmic rays. J Phys G, 2007, 34: 1891-1900 CrossRef Google Scholar

[103] Berezinsky V S, Grigorieva S I, Hnatyk B I. Extragalactic UHE proton spectrum and prediction for iron-nuclei flux at 108–109 GeV. Astropart Phys, 2004, 21: 617-625 CrossRef Google Scholar

[104] Berezinsky V. On transiton from galactic to extragalactic cosmic rays. J Phys: Conf Ser, 2006, 47: 142-153 CrossRef Google Scholar

[105] Bergstrom L, Bringmann T, Edsjo J. New positron spectral features from supersymmetric dark matter: A way to explain the PAMELA data? Phys Rev D, 2008, 78: 103520. Google Scholar

[106] Barger V, Keung W Y, Marfatia D, et al. PAMELA and dark matter. Phys Lett B, 2009, 672: 141-146 CrossRef Google Scholar

[107] Cirelli M, Kadastik M, Raidal M, et al. Model-independent implications of the e, p- cosmic ray spectra on properties of dark matter. Nucl Phys B, 2009, 813: 1-21 CrossRef Google Scholar

[108] Yin P F, Yuan Q, Liu J, et al. PAMELA data and leptonically decaying dark matter. Phys Rev D, 2009, 79: 023512 CrossRef Google Scholar

[109] Zhang J, Bi X J, Liu J, et al. Discriminating different scenarios to account for the cosmic e± excess by synchrotron and inverse Compton radiation. Phys Rev D, 2009, 80: 023007 CrossRef Google Scholar

[110] Yuksel H, Kistler M D, Stanev T. TeV Gamma rays from geminga and the origin of the GeV positron excess. Phys Rev Lett, 2009, 103: 051101 CrossRef Google Scholar

[111] Hooper D, Blasi P, Serpico P D, et al. Pulsars as the sources of high energy cosmic ray positrons. J Cosmol Astropart Phys, 2009, 1: 25-35 Google Scholar

[112] Prefumo S. Dissecting cosmic-ray electron-positron data with Occam’s razor: The role of known pulsars. Central Eur J Phys, 2012, 10: 1-31 Google Scholar

[113] Malyshev D, Cholis I, Gelfand J. Pulsars versus dark matter interpretation of ATIC/PAMELA. Phys Rev D, 2009, 80: 063005 CrossRef Google Scholar

[114] Blasi P. Origin of the positron excess in cosmic rays. Phys Rev Lett, 2009, 103: 051104 CrossRef Google Scholar

[115] Hu H B, Yuan Q, Wang B, et al. On the e+e- excesses and the knee of the cosmic ray spectra-hints of cosmic ray acceleration in young supernova remnants. Astrophys J, 2009, 700: 170-173 CrossRef Google Scholar

[116] Adriani O, Barbarino G C, Bazilevskaya G A, et al. PAMELA results on the cosmic-ray antiproton from 60 MeV to 180 GeV in kinetic energy. Phys Rev Lett, 2010, 105: 121101 CrossRef Google Scholar

[117] Adriani O, Barbarino G C, Bazilevskaya G A, et al. Measurement of boron and carbon fluxes in cosmic rays with the PAMELA experiment. Phys Rep, 2014, 544: 323 CrossRef Google Scholar

[118] Orito S, Maeno T, Matsunaga H, et al. Precision measurement of cosmic-ray antiproton spectrum. Phys Rev Lett, 2000, 84: 1078-1081 CrossRef Google Scholar

[119] Asaoka Y, Shikaze Y, Abe K, et al. Measurements of cosmic-ray low-energy antiproton and proton spectra in a transient period of solar field reversal. Phys Rev Lett, 2002, 88: 051101 CrossRef Google Scholar

[120] Boezio M, Carison P, Francke T, et al. The cosmic-ray antiproton flux between 0. 62 and 3. 19 GeV measured near solar minimum activity. Astrophys J, 1997, 487: 415-423 CrossRef Google Scholar

[121] Boezio M, Bonvicini V, Schiavon P. The cosmic-ray antiproton flux between 3 and 49 GeV. Astrophys J, 2001, 561: 787-799 CrossRef Google Scholar

[122] Beach A, Beatty J J, Bhattacharyya A, et al. Measurement of the cosmic-ray antiproton-to-proton abundance ratio between 4 and 50 GeV. Phys Rev Lett, 2001, 87: 271101 CrossRef Google Scholar

[123] Adriani O, Barbarino G C, Bazilevskaya G A, et al. Measurement of boron and carbon fluxes in cosmic rays with the PAMELA experiment. Astrophys J, 2014, 791: 93-104 CrossRef Google Scholar

[124] Derbina V A. Cosmic-ray spectra and composition in the energy range of 10–1000 TeV per particle obtained by the RUNJOB experiment. Astrophys J, 2005, 628: 41-44 CrossRef Google Scholar

[125] Juliusson E. Charge composition and energy spectra of cosmic-ray nuclei at energies above 20 GeV per nucleon. Astrophys J, 1974, 191: 331-348 CrossRef Google Scholar

[126] Dwyer R. The mean mass of the abundant cosmic-ray nuclei from boron to silicon at 1. 2 GeV per atomic mass unit. Astrophys J, 1978, 224: 691-707 CrossRef Google Scholar

[127] Orth C D, Buffington A, Smoot G F, et al. Abundances and spectra for cosmic-ray nuclei from lithium to iron for 2 to 150 GeV per nucleon. Astrophys J, 1978, 226: 1147-1161 CrossRef Google Scholar

[128] Simon T, Linsky J L, Schiffer F H, et al. Binary stars, flare stars, iue, stellar spectra, ultraviolet spectra, emission spectra, line spectra, magnesium, radiant flux density, stellar magnetic fields. Astrophys J, 1980, 239: 911-918 CrossRef Google Scholar

[129] Engelmann J J, Ferrando P, Soutoul A, et al. Charge composition and energy spectra of cosmic-ray nuclei for elements from Be to NI- Results from HEAO-3-C2. Astron Astrophys, 1990, 233: 96-111 Google Scholar

[130] Maehl R C, Ormes J F, Fisher A J, et al. Energy spectra of cosmic ray nuclei-Z of 4 to 26 and E of 0. 3 to 2 GeV/amu. Astrophys Space Sci, 1977, 47: 163-184 CrossRef Google Scholar

[131] Lukasiak A. Voyager measurements of the charge and isotopic composition of cosmic ray Li, Be and B nuclei and implications for their production in the galaxy. In: The International Cosmic Ray Conference. 1999, 3: 41. Google Scholar

[132] Duvernois M A, Simpson J A, Thayer M R, et al. Interstellar propagation of cosmic rays: Analysis of the ULYSSES primary and secondary elemental abundances. Astron Astrophys, 1996, 316: 555-563 Google Scholar

[133] Davis A J, Mewaldt R A, Binns W R, et al. On the low energy decrease in galactic cosmic ray secondary/primary ratios. AIPC, 2000, 528: 421-424 Google Scholar

[134] Blasi P, Serpico P D. High-energy antiprotons from old supernova remnants. Phys Rev Lett, 2009, 103: 081103 CrossRef Google Scholar

[135] Mertsch P, Sarkar S. Testing astrophysical models for the PAMELA positron excess with cosmic ray nuclei. Phys Rev Lett, 2009, 103: 081104 CrossRef Google Scholar

[136] Aharonian F, Akhperjanian A G, Bazer-Bachi A R, et al. First ground-based measurement of atmospheric Cherenkov light from cosmic rays. Phys Rev D, 2007, 75: 042004 CrossRef Google Scholar

[137] Bartoli B, Bernardini P, Bi X J, et al. The knee of the cosmic hydrogen and helium spectrum below 1 PeV measured by ARGO-YBJ and a Cherenkov telescope of LHAASO. 2015, arXiv:1502.03164. Google Scholar

[138] ARGO-YBJ Collaboration. The Cosmic Ray p+He energy spectrum in the 3–3000 TeV energy range measured by ARGO-YBJ. 2015, arXiv:1502.01894. Google Scholar

[139] Tibet ASg Collaboration. Primary proton and helium spectra at energy range from 50 TeV to 1 PeV observed with (YAC+Tibet-III ) hybrid experiment. In: The International Cosmic Ray Conference. Brazil, 2013. Google Scholar

[140] KASCADE-Grande Collaboration . KASCADE-Grande measurements of energy spectra for elemental groups of cosmic rays. Astropart Phys, 2013, 47: 54-66 CrossRef Google Scholar

[141] Giacinti G, Kachelriess M, Semikoz D V. Explaining the spectra of cosmic ray groups above the knee by escape from the Galaxy. Phys Rev D, 2014, 90: 041302 Google Scholar

[142] Erlykin A D, Wolfendale A W. The knee in the cosmic ray energy spectrum. 2009, arXiv:0906.3949. Google Scholar

[143] Su M, Slatyer T R, Finkbeiner D P. Giant gamma-ray bubbles from Fermi-LAT: Active galactic nucleus activity or bipolar galactic wind? Astrophys J, 2010, 724: 1044–1082. Google Scholar

[144] Guo Y Q, Feng Z Y, Yuan Q, et al. On the galactic center being the main source of galactic cosmic rays as evidenced by recent cosmic ray and gamma ray observations. New J Phys, 2013, 15: 013053 CrossRef Google Scholar

[145] Apel W D, Arteaga-Velazquez J C, Bekk K, et al. Ankle-like feature in the energy spectrum of light elements of cosmic rays observed with KASCADE-Grande. Phys Rev D, 2013, 87: 081101 Google Scholar

[146] Aab A, Abreu P, Aglietta M, et al. The Pierre Auger Observatory: Contributions to the 33rd International Cosmic Ray Conference. arXiv:1307.5059. Google Scholar

[147] Abu-Zayyad T, Aida R, Allen M, et al. The cosmic-ray energy spectrum observed with the surface detector of the telescope array experiment. Astrophys J, 2013, 768: 1-6 CrossRef Google Scholar

[148] Gaisser T K, Stanev T, Tilav S. Cosmic ray energy spectrum from measurements of air showers. Front Phys, 2013, 8: 748-758 CrossRef Google Scholar

[149] Amenomori M, Ayabe S, Bi X J, et al. Anisotropy and corotation of galactic cosmic rays. Science, 2006, 314: 439-443 CrossRef Google Scholar

[150] Hall D L, Munakata K, Yasue S, et al. Gaussian analysis of two hemisphere observations of galactic cosmic ray sidereal anisotropies. J Geophys Res: Space Phys (1978–2012), 1999, 104(A4): 6737–6749. Google Scholar

[151] Abdo A A, Allen B T, Aune T, et al. The large-scale cosmic-ray anisotropy as observed with Milagro. Astrophys J, 2009, 698: 2121 CrossRef Google Scholar

[152] Bartoli B, Bernardini P, Bi X J, et al. Medium scale anisotropy in the TeV cosmic ray flux observed by ARGO-YBJ. Phys Rev D, 2013, 88: 082001 CrossRef Google Scholar

[153] Sakakibara S, Ueno H, Fujimoto K, et al. Sidereal time variation of small air showers observed at Mt. Norikura. In: The International Cosmic Ray Conference. 1973, 2: 1058. Google Scholar

[154] Bercovitch M, Agrawal S P. Cosmic ray anisotropies at median primary rigidities between 100 and 1000 GV. In: The International Cosmic Ray Conference. 1981, 10: 246. Google Scholar

[155] Nagashima K, Morishita , Yasue S. Modulation of galactic cosmic ray anisotropy in heliomagnetosphere - Seasonal variation of sidereal daily variation. Planet Space Sci, 1983, 31: 1259-1268 CrossRef Google Scholar

[156] Swinson S B, Nagashima K. Corrected sidereal anisotropy for underground muons. Planet Space Sci, 1985, 33: 1069-1072 CrossRef Google Scholar

[157] Nagashima K, Sakakibara S, Fenton A G, et al. The insensitivity of the cosmic ray galactic anisotropy to heliomagnetic polarity reversals. Planet Space Sci, 1985, 33: 395-405 CrossRef Google Scholar

[158] Andreyev Y M, Chudakov A E, Kozyarivsky V A, et al. Cosmic ray sidereal anisotropy observed by baksan underground muon telescope. In: The International Cosmic Ray Conference. 1987, 2: 22. Google Scholar

[159] Lee Y W, Ng L K. Observation of cosmic-ray intensity variation using AN underground telescope. In: The International Cosmic Ray Conference. 1987, 2: 18. Google Scholar

[160] Ueno H, Fujii Z, Yamada T. 11 Years variations of sidereal anisotropy observed at sakashita underground station. In: The International Cosmic Ray Conference. 1990, 6: 361. Google Scholar

[161] Cutler D J, Groom D E. Mayflower Mine 1500 GV detector—Cosmic-ray anisotropy and search for Cygnus X-3. Astrophys J, 1991, 376: 322-334 CrossRef Google Scholar

[162] Munakata K, Yasue S, Mori S, et al. Two hemisphere observations of the north-south sidereal asymmetry at 1 TeV. In: The International Cosmic Ray Conference. 1995, 4: 639. Google Scholar

[163] Mori S, Yasue S, Munakata K, et al. Observation of sidereal anisotropy of cosmic rays at ~1 TeV. In: The International Cosmic Ray Conference. 1995, 4: 648. Google Scholar

[164] Fenton K B, Fenton A G, Humble J E, et al. Sidereal variations at high energies—observations at poatina. In: The International Cosmic Ray Conference. 1995, 4: 635. Google Scholar

[165] Munakata K, Kiuchi T, Yasue S, et al. Large-scale anisotropy of the cosmic-ray muon flux in Kamiokande. Phys Rev D, 1997, 56: 23-26 CrossRef Google Scholar

[166] Ambrosio M, Antolini R, Baldini A, et al. Search for the sidereal and solar diurnal modulations in the total MACRO muon data set. Phys Rev D, 2003, 67: 042002 CrossRef Google Scholar

[167] Guillian G, Hosaka J, Ishihara K, et al. Observation of the anisotropy of 10 TeV primary cosmic ray nuclei flux with the Super-Kami- okande-I detector. Phys Rev D, 2007, 75: 062003 CrossRef Google Scholar

[168] Gombosi T, Kóta J, Somogyi A J, et al. Galactic cosmic ray anisotropy at ~6×1013 eV. In: The International Cosmic Ray Conference. 1975, 2: 586. Google Scholar

[169] Alexeyenko V V, Chudakov A E, Gulieva E N, et al. Anisotropy of small EAS (about 10(13) Ev). In: The International Cosmic Ray Conference. 1981, 2: 146. Google Scholar

[170] Nagashima K, Fujimoto K, Sakakibara S, et al. Galactic cosmic-ray anisotropy and its modulation in the heliomagnetosphere, inferred from air shower observation at Mt. Norikura. Nuovo Cimento C, 1989, 12: 695-749 CrossRef Google Scholar

[171] Amenomori M, Ayabe S, Cui S W, et al. Large-scale sidereal anisotropy of galactic cosmic-ray intensity observed by the Tibet air shower array. Astrophys J, 2005, 626: 29-32 CrossRef Google Scholar

[172] Aglietta M, Alessandro B, Antonioli P, et al. Study of the cosmic ray anisotropy at E0–100 TeV from EAS-TOP: 1992–1994. In: The International Cosmic Ray Conference. 1995, 2: 800. Google Scholar

[173] Aglietta M, Alessandro B, Antonioli P, et al. A measurement of the solar and sidereal cosmic-ray anisotropy at E0 approximately 1014 Ev. Astrophys J, 1996, 470: 501-505 CrossRef Google Scholar

[174] Aglietta M, Alekseenko V V, Alessandro B, et al. Evolution of the cosmic-ray anisotropy above 1014 eV. Astrophys J, 2009, 692: 130-133 CrossRef Google Scholar

[175] Alekseenko V V, Cherniaev A B, Djappuev D D, et al. 10–100 TeV cosmic ray anisotropy measured at the Baksan EAS “Carpet” array. Nuc Phys S, 2009, 196: 179-182 CrossRef Google Scholar

[176] Abdo A A, Allen B T, Aune T, et al. The large-scale cosmic-ray anisotropy as observed with Milagro. Astrophys J, 2009, 698: 2121-2130 CrossRef Google Scholar

[177] Iuppa R, Aniso Allen B T, Aune T. Tropies in the cosmic radiation observed with ARGO-YBJ. 2011, arXiv:1112.2375. Google Scholar

[178] Abbasi R, Abdou Y, Abu-Zayyad T, et al. Measurement of the anisotropy of cosmic-ray arrival directions with IceCube. Astrophys J, 2010, 718: 194-198 CrossRef Google Scholar

[179] Abbasi R, Abdou Y, Abu-Zayyad T, et al. Observation of anisotropy in the galactic cosmic-ray arrival directions at 400 TeV with IceCube. Astrophys J, 2012, 746: 33-44 CrossRef Google Scholar

[180] Aartsen M G, Abbasi R, Abdou Y, et al. Observation of cosmic-ray anisotropy with the IceTop Air Shower Array. Astrophys J, 2013, 765: 55-64 CrossRef Google Scholar

[181] Blasi P, Amato E. Diffusive propagation of cosmic rays from supernova remnants in the Galaxy. II: Anisotropy. J Cosmol Astropart Phys, 2012, 1: 11-33 Google Scholar

[182] Tibet ASg collaboration . Modeling of the high-energy galactic cosmic-ray anisotropy. Astrophys Space Sci Trans, 2010, 6: 49-52 CrossRef Google Scholar

[183] Qu X B, Zhang Y, Xue L, et al. Anisotropy as a probe of the galactic cosmic-ray propagation and halo magnetic field. Astrophys J, 2012, 750: 17-22 CrossRef Google Scholar

[184] Zhang M, Zuo P, Pogorelov N. Heliospheric influence on the anisotropy of TeV cosmic rays. Astrophys J, 2014, 790: 5 CrossRef Google Scholar

[185] Ackermann M, Ajello M, Atwood W B, et al. Fermi-LAT observations of the diffuse gamma-Ray emission: Implications for cosmic rays and the interstellar medium. Astrophys J, 2012, 750: 3-35 CrossRef Google Scholar

[186] Bi X J, Yin P F, Yuan Q. Status of dark matter detection. Front Phys, 2013, 8: 794-827 CrossRef Google Scholar

[187] Meyer M, Horns D, Raue M. First lower limits on the photon-axion-like particle coupling from very high energy gamma-ray observations. Phys Rev D, 2013, 87: 035027 CrossRef Google Scholar

[188] Abdo A A, Ackermann M, Ajello M, et al. A limit on the variation of the speed of light arising from quantum gravity effects. Nature, 2009, 462: 331-334 CrossRef Google Scholar

[189] Kang M M, Hu Y, Hu H B, et al. Cosmic rays during BBN as origin of lithium problem. J Cosmol Astropart Phys, 2012, 5: 11 Google Scholar

  • 图1

    (网络版彩色)太阳系和宇宙线各个元素丰度比较[8]. 其中太阳系各个元素丰度来自于文献[9], 宇宙线丰度来自于文献[10], 质子和氦核丰度来自于文献[11,12]

  • 图2

    (网络版彩色)宇宙线能谱: 宇宙线全粒子谱来自于实验观测[16], Tibet-ASg[17], KASCADE[18], Akeno[19], AGASA[20], HiResI[21], HiResII[22], AUGER[23], TA[24], IceCube[25]; 质子成分能谱观测来自于AMS01[26], AMS02[27], BESS[28], ATIC[29], CREAM[30], PAMELA[31], RunJob[32], CAPRICE[33], JACEE[34]; 轻核成分(p+He)观测数据来自于ARGO-YBJ[35], ARGO-WFCTA[36]; 正负电子能谱测量来自于AMS02[37], AMS01[38], PAMELA[39], HEAT[40], CAPRICE[41], ATIC[42], Fermi-LAT[43], HESS[44], BETS[45]; 反质子实验观测来自于PAMELA[46], AMS01[47], BESS[48,49], CAPRICE[50]; 全天区的伽玛射线观测来自于FermiLAT[51]; 大气中微子观测来自于IceCube[52,53], AMANDA[54], ANTARES[55], FREJUS[56]; 天体中微子观测数据来自于文献[57,58]

  • 图3

    (网络版彩色)非线性扩散激波加速理论解释宇宙线能谱[79,80]

  • 图4

    银河宇宙线至少应该有两个成分[69]

  • 图5

    (网络版彩色)p0峰(p0 bump)位于~100 MeV能量[84]

  • 图6

    (网络版彩色)(a) 正电子能谱; (b) 负电子能谱. 实验测量数据来自于: AMS02[37], ATIC[42], Fermi-LAT[43], HESS[44], AMS01[38], HEAT[40], CAPRICE[41], BETS[45]

  • 图7

    (网络版彩色)(a) 质子能谱; (b) 氦核能谱. 实验测量数据来自于: ATIC[29], CREAM[30], PAMELA[31], AMS02 20152)(footnote: Oliva A, 2013, CERN Courier)

  • 图8

    (网络版彩色)(a) 反质子与质子比率; (b) 硼碳比率. 关于pˉ/p的实验观测来自于: PAMELA 2010[116], PAMELA 2014[117], BESS 1995- 1997[118], BESS 1999[119], CAPRICE 1994[120], CAPRICE 1998[121], HEAT[122]. 关于B/C实验观测来自于: AMS02 20133)(footnote: Aguilar M, 2013, CERN Courier), AMS02 20154)(footnote: Oliva A, 2013, CERN Courier), PAMELA[123], RUNJOB[124], Juliusson[125], Dwyer[126], Orth[127], Simon[128], HEAO-3[129], Maehl[130], Voyager[131], Ulysses[132], ACE[133]

  • 图9

    (网络版彩色)轻核成分膝区能谱测量结果. 实验观测来自于: ARGO/WFCTA[36,137], ARGO-YBJ[35,138], Tibet-ASg [139], CREAM[30], KASCADE[140]

  • 图10

    (网络版彩色)传播模型可以描述“膝”的拐折[141]

  • 图11

    大多数的实验测出尖锐的“膝”[142]

  • 图12

    (网络版彩色)重核在80 PeV的“膝”及轻核在120 PeV的“踝” [145]

  • 图13

    AUGER, TA的精确测量且高度一致的极高能宇宙线能谱[145]

  • 图14

    (a) Hillas模型的三分量解释; (b) 极高能增加第四组质子成分[148]

  • 图15

    (网络版彩色)TeV能区北天区宇宙线各向异性的二维分布图, 不随时间及太阳活动变化. (a)和(b)中的区域I是所谓的tail-in, 即太阳球磁尾方向, 与太阳所处位置的外旋臂切向接近. 区域II是loss cone方向, 指向接近银河系北极. 区域III是天鹅座方向, 与太阳所处位置的内旋臂切向接近[149]

  • 图16

    (网络版彩色)宇宙线各向异性偶极分量的振幅(a)和恒星时相位(b)随能量的变化. 实验观测数据来自于: Norikura1973[153], Ottawa1981[154], London1983[155], Bolivia1985[156], Budapest1985[155], Hobart1985[155], London1985[157], Misato1985[155], Socorro1985[156], Yakutsk1985[155], Baksan1987[158], HongKong1987[159], Sakashita1990[160], Utah1991[161], Liapootah1995[162], Matsushiro1995[163], Poatina1995[164], Kamiokande1997[165], Macro2003[166], SuperKamiokande2007[167], PeakMusal1975[168], Baksan1981[169], Norikura1989[170], Tibet2005[171], EASTOP1995[172], EASTOP1996[173], EASTOP2009[174], Baksan2009[175], Milagro2009[176], ARGO2011[177], IceCube2010[178], IceCube2012[179], IceCube2013[180], Tibet20135)(footnote: Amenomori M, Bi X J, Chen D, et al. Observation of the large-scale sidereal anisotropy of the galactic cosmic ray intensity at 300 TeV with the Tibet Air Shower Array. In: the 33rd International Cosmic Ray Conference. 2013)

  • 图17

    (网络版彩色)模拟计算的各向异性振幅随能量变化, 每条线代表一个模拟的银河系情况[181]

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1