Quasars are the brightest objects in the distant Universe. The quasar optical emitting region is very small, ranging from a few light days to a few light years based on quasar variability studies. Such a small region is thousands times greater than much larger normal galaxies. What physical mechanism powers such a gigantic energy source? The answer is the accretion of surrounding materials to the central supermassive black hole. In addition to the accretion process, quasars may also produce winds/jets, which interact with surrounding interstellar medium to influence the host galaxy evolution. In this paper we will discuss the followings in detail: (1) discovery of quasars, (2) quasar power engine, (3) theoretical model of black hole accretion disk, (4) quasar jets, (5) the co-evolution of supermassive black holes and their host galaxies.
国家自然科学基金(11373008)
[1] Edge D O, Shakeshaft J R, McAdam W B, et al. A survey of radio sources at a frequency of 159 Mc/s. Memo R Astron Soc, 1959, 68: 37-60 Google Scholar
[2] Matthews T A, Sandage A R. Optical identification of 3c 48, 3c 196, and 3c 286 with stellar objects. Astrophys J, 1963, 138: 30-58 CrossRef Google Scholar
[3] Schmidt M. 3C 273: A star-like object with large red-shift. Nature, 1963, 197: 1040 Google Scholar
[4] Wyckoff S, Gshren T, Morton D C, et al. Discovery of nebulosity associated with the quasar 3C 273. Astrophys J, 1980, 242: 59-63 CrossRef Google Scholar
[5] Salpeter E E. Accretion of interstellar matter by massive objects. Astrophys J, 1964, 140: 796-800 Google Scholar
[6] Lynden-Bell D. Galactic nuclei as collapsed old quasars. Nature, 1969, 223: 690-694 CrossRef Google Scholar
[7] Hopkins P F, Richards G T, Hernquist L. An observational determination of the bolometric quasar luminosity function. Astrophys J, 2007, 654: 731-753 CrossRef Google Scholar
[8] King A. Black holes, galaxy formation, and the MBH-σ relation. Astrophys J Lett, 2003, 596: 27-29 CrossRef Google Scholar
[9] Hopkins P F, Hernquist L, Martini P, et al. A physical model for the origin of quasar lifetimes. Astrophys J Lett, 2005, 625: 71-74 CrossRef Google Scholar
[10] Urry C. AGN Unification: An update. In: Richards G T, Hall P B, eds. AGN Physics with the Sloan Digital Sky Survey. Astronomical Society of the Pacific Conference Series. San Francisco: Astronomical Society of the Pacific. 2004, 311: 49-60 Google Scholar
[11] Novikov I D, Thorne K S. Astrophysics of black holes. In: Dewitt C, DeWitt B S, eds. Black holes, Les Astres Occults. Paris: Gordon and Breach Science Publishers. 1973, : 343-450 Google Scholar
[12] Shakura N I, Sunyaev R A. Black holes in binary systems. Observational appearance. Astron Astrophys, 1973, 24: 337-355 Google Scholar
[13] Lynden-Bell D, Pringle J E. The evolution of viscous discs and the origin of the nebular variables. Month Not R Astron Soc, 1974, 168: 603-637 CrossRef Google Scholar
[14] 钱 磊. 黑洞吸积盘结构和辐射的理论研究. 博士学位论文. 北京: 北京大学. 2009, Google Scholar
[15] Remillard R A, McClintock J E. X-ray properties of black-hole binaries. Annu Rev Astron Astrophys, 2006, 44: 49-92 CrossRef Google Scholar
[16] Katz J. X-rays from spherical accretion onto degenerate dwarfs. Astrophys J, 1977, 215: 265-275 CrossRef Google Scholar
[17] Begelman M C. Can a spherically accreting black hole radiate very near the Eddington limit. Month Not R Astron Soc, 1979, 187: 237-251 CrossRef Google Scholar
[18] Abramowicz M A, Czerny B, Lasota J P, et al. Slim accretion disks. Astrophys J, 1988, 332: 646-658 CrossRef Google Scholar
[19] Ichimaru S. Bimodal behavior of accretion disks-Theory and application to Cygnus X-1 transitions. Astrophys J, 1977, 214: 840-855 CrossRef Google Scholar
[20] Narayan R, Yi I. Advection-dominated accretion: A self-similar solution. Astrophys J Lett, 1994, 428: L13-L16 CrossRef Google Scholar
[21] Abramowicz M A, Chen X, Kato S, et al. Thermal equilibria of accretion disks. Astrophys J Lett, 1995, 438: L37-L39 CrossRef Google Scholar
[22] Gebhardt K, Bender R, Bower G, et al. A relationship between nuclear black hole mass and galaxy velocity dispersion. Astrophys J Lett, 2000, 539: 13-16 CrossRef Google Scholar
[23] Ferrarese L, Merritt D. A fundamental relation between supermassive black holes and their host galaxies. Astrophys J Lett, 2000, 539: 9-12 CrossRef Google Scholar
[24] Fabian A C. Observational evidence of active galactic nuclei feedback. Annu Rev Astron Astrophys, 2012, 50: 455-489 CrossRef Google Scholar
[25] D’Onofrio M, Marziani P, Sulentic J W, et al. Models of Quasars. In: Fifty Years of Quasars: From Early Observations and Ideas to Future Research. Astrophysics and Space Science Library. Berlin Heidelberg: Springer. 2012, 386: 337-440 Google Scholar
[26] Blandford R D, Payne D G. Hydromagnetic flows from accretion discs and the production of radio jets. Month Not R Astron Soc, 1982, 199: 883-903 CrossRef Google Scholar
[27] Blandford R D, Znajek R L. Electromagnetic extraction of energy from Kerr black holes. Month Not R Astron Soc, 1977, 179: 433-456 CrossRef Google Scholar
[28] Penrose R. Gravitational collapse: The role of general relativity. General Rel Grav, 2002, 34: 1141-1165 CrossRef Google Scholar
[29] Wu X B, Wang F, Fan X, et al. An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6. 30. Nature, 2015, 518: 512-515 CrossRef Google Scholar
[30] Mortlock D J, Warren S J, Venemans B P, et al. A luminous quasar at a redshift of z=7. 085. Nature, 2011, 474: 616-619 CrossRef Google Scholar
图1
3C 273的光谱. 图片版权: Maarten Schmidt
图2
(网络版彩色)类星体标准模型示意图. 来源: Urry 2004
图3
(网络版彩色)SDSS J0100+2802是宇宙早期光度最高、黑洞质量最大的类星体. 图/李兆聿(中国科学院上海天文台)
吴学兵
北京大学物理学院天文学系教授, 科维理天文与天体物理研究所副所长. 1986年和1989年在华中师范大学物理学系获学士和硕士学位, 1996年在中国科学院北京天文台获理学博士学位, 1996年在中国科学院理论物理所做博士后. 1998年任中国科学院北京天文台副研究员. 曾在美国阿拉巴马大学和德国马普天体物理所访问. 自2000年在北京大学任教. 2004年入选教育部新世纪优秀人才计划, 2005年获国家杰出青年科学基金. 研究领域为类星体与活动星系核、黑洞天体物理. 研究成果入选2015年度中国科学十大进展.
Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有
京ICP备18024590号-1