Numerical studies on the effect of the key parameter to hypersonic “pitch-up anomaly”

logo

SCIENTIA SINICA Physica, Mechanica & Astronomica, Volume 45, Issue 3: 034701(2015) https://doi.org/10.1360/SSPMA2014-00137

Numerical studies on the effect of the key parameter to hypersonic “pitch-up anomaly”

More info
  • ReceivedMay 6, 2014
  • AcceptedAug 11, 2014
  • PublishedJan 19, 2015
PACS numbers

Abstract

高温真实气体效应所引起气体比热比g的降低被认为是导致航天飞机“上仰异常”的主要原因. 为详细研究此问题, 本文数值求解了Euler方程, 化学反应源项采用有限速率模型, 考虑了5个组分、17个基元反应. 研究结果表明采用低比热比气体CF4作为实验气体会导致膨胀区的压力分布与真实气体效应的影响规律不一致, 并不能反映出“上仰异常”现象的本质. 在高温真实气体效应的影响下, 化学反应所带来的影响大于振动激发的影响, 对于y方向半模压力积分Cay来说是3.8倍, 而对于半模力矩积分系数Cam来说是1.7倍. 对比分析表明, 热化学反应导致的比热比分布不均衡是导致“上仰异常”现象出现的根本原因.


Funded by

中国科学院知识创新工程重要方向项目


References

[1] Giuseppe P, Raffaele V. Finite Rate Chemistry Effects on the High Altitude Aerodynamic of An Apollo-Shaped Reentry Capsule. New York: AIAA. 2009, Google Scholar

[2] Park C. Validation of CFD Codes for Real-Gas Regime. New York: AIAA. 1997, Google Scholar

[3] Mundt C. Calculation of Hypersonic, Viscous, Nonequilibrium Flows Around Reentry Bodies Using A Coupled Boundary Layer/Euler Method. New York: AIAA. 1992, Google Scholar

[4] Ernst H H, Claus W. Selected Aerothermodynamic Design Problems of Hypersonic Flight Vehicles. New York: AIAA. 2009, Google Scholar

[5] Compton H R, Schies J R, Suit W T, et al. Stability and control over the supersonic and hypersonic speed range. Conference Paper, NASA Langley, 1983. Google Scholar

[6] Brauckmann G J, Paulson W K. Experimental and computational analysis of the space shuttle orbiter hypersonic pitch-up anomaly. J Spacecr Rockets, 1995, 32(5): 758-764 CrossRef Google Scholar

[7] Muylaert J, Walpot L, Rostand P, et al. Extrapolation from Wind Tunnel to Flight: Shuttle Orbiter Aerodynamics. Technical Report, NASA, 1998. Google Scholar

[8] Griffith B J, Maus J R, Best J T. Explanation of the hypersonic longitudinal stability problem lessons learned. Conference Paper, NASA, 1983. Google Scholar

[9] Romere P O, Whitnah A M. Space shuttle entry longitudinal aerodynamic comparison of flights 1-4 with preflight predictions. Conference Paper, NASA, 1983. Google Scholar

[10] Galloway R L. Real Gas Simulation for the Shuttle Orbiter and Planetary Entry Configurations Including Flight Results. Technical Report, AIAA, 1984. Google Scholar

[11] Gnoffo P A, Gupta R N, Shinn J L. Conservation Equations and Physical Models for Hypersonic Air Flows in Thermal and Chemical Nonequilibrium. Technical Report, NASA, 1989. Google Scholar

[12] Dunn M G, Kang S W. Theoretical and experimental studies of reentry plasmas. Technical Report, NASA, 1973. Google Scholar

[13] Chul P, Wayland G. Nonequilibrium hypersonic aerothermodynamics. Phys Tod, 1991, 42(2): 98 Google Scholar

[14] Millikan R C, White D R. Systematics of vibrational relaxation. J Chem Phys, 1963, 39: 3209-3213 CrossRef Google Scholar

[15] White F A. Viscous Fluid Flow. New York: McGraw-Hill Book Company. 1974, Google Scholar

[16] Seokkwan Y, Antony J. Lower-Upper Symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations. AIAA J, 1988, 26: 1025-1026 CrossRef Google Scholar

[17] Kim K H, Kim C, Rho O H. Methods for the accurate computations of hypersonic flows I. J Comput Phys, 2001, 174: 38-80 CrossRef Google Scholar

[18] Kim K H, Lee J H, Rho O H. An improvement of AUSM schemes by introducing the pressure-based weight functions. Comput Fluids, 1998, 27(3): 311-346 CrossRef Google Scholar

[19] Keiichi K, Eiji S, Yoshiaki N, et al. Evaluation of Euler flux for hypersonic heating computations. AIAA J, 2010, 48(4): 763-776 CrossRef Google Scholar

[20] Kliche D, Mundt C, Hirschel E H. The hypersonic Mach number independence principle in the case of viscous flow. Shock Waves, 2011, 21: 307-314 CrossRef Google Scholar

[21] Miller J H. Computational Aerothermodynamic Datasets for Hypersonic Heat Transfer on Reentry Vehicles. Technical Report, AIAA, 2005. Google Scholar

[22] Masatoshi K, Hideyuki T, Masahiro T, et al. Comparison of Re-Entry Flow Computations with High Enthalpy Shock Tunnel Experiments. Technical Report, AIAA, 2009. Google Scholar

  • 图1

    (网络版彩图)研究模型示意图

  • 图2

    (网络版彩图)气动参数Cax, Cay及壁面压力系数分布的网格无关性

  • 图3

    (网络版彩图)不同模型下壁面压力分布与实验结果的对比

  • 图4

    (网络版彩图)激波前g =1.4和激波层内g =1.35条件下: Cax, CayCam随马赫数的变化

  • 图5

    (网络版彩图)Mach=20时Cax, CayCam随激波层内气体比热比的变化: 激波前g为1.4

  • 图6

    (网络版彩图)Mach=20时激波层内采用不同气体比热比壁面压力系数的对比: (a) Cp, (b) Cp局部放大图

  • 图7

    (网络版彩图)不同气体状态下气动力系数随马赫数的变化, (a) Cax; (b) Cay; (c) Cam; (d) Cax的相对变化量; (e) Cay的相对变化量

  • 图8

    (网络版彩图)不同气体状态下壁面无量纲压力分布:Mach=20

  • 图9

    (网络版彩图)不同气体状态下激波形状的对比: Mach=20

  • 图10

    (网络版彩图)热非平衡气体下激波层内g的分布: Mach=20

  • 图11

    (网络版彩图)Cax, Cay, Cam随马赫数的变化, (a) Cax; (b) Cay; (c) Cam; (d) Cax的相对变化量; (e) Cay的相对变化量

  • 图12

    (网络版彩图)紧贴激波面后及物面上压力分布的对比: Mach=20

  • 图13

    (网络版彩图)紧贴激波面后及物面上气体比热比g的分布: Mach=20

  • 图14

    (网络版彩图)Mach=20时不同气体质的量分数分布: (a) O2, (b) N2

  • 图15

    (网络版彩图)激波层内g的对比: Mach=20

  • 图16

    (网络版彩图)q=45°之后流动冻结: (a) Cax; (b) Cay; (c) Cam

  • 图17

    (网络版彩图)q=45°之后流动冻结, (a) 激波后及物面上压力分布; (b) 激波层内g的分布

  • Table 1   Chemical reactions and rate coefficients

    Reactions

    kf,r

    kb,r

    Third body M

    N2 +M? N+N +M

    4.8× 1017 T?0.5exp(?1.13 ×10 5/T)

    2.72× 1016 T?0.5

    N2

    1.92× 1017 T?0.5exp(?1.13 ×10 5/T)

    1.10× 1016 T?0.5

    O2

    1.92× 1017 T?0.5exp(?1.13 ×10 5/T)

    1.10× 1016 T?0.5

    NO

    4.16× 1022 T?1.5exp(?1.13 ×10 5/T)

    2.27× 1021 T?1.5

    N

    1.92× 1017 T?0.5exp(?1.13 ×10 5/T)

    1.10× 1016 T?0.5

    O

    O2 +M? O+O +M

    7.21× 1018 T?1.0exp(?5.95 ×10 4/T)

    6.0× 1015 T?0.5

    N2

    3.25× 1019 T?1.0exp(?5.95 ×10 4/T)

    2.7× 1016 T?0.5

    O2

    3.61× 1018 T?1.0exp(?5.95 ×10 4/T)

    3.0× 1015 T?0.5

    NO

    3.61× 1018 T?1.0exp(?5.95 ×10 4/T)

    3.0× 1015 T?0.5

    N

    9.02× 1019 T?1.0exp(?5.95 ×10 4/T)

    7.5× 1016 T?0.5

    O

    NO+M ?N+ O+M

    3.97× 1020 T?1.5exp(?7.55 ×10 4/T)

    1.0× 1020 T?1.5

    N2

    3.97× 1020 T?1.5exp(?7.55 ×10 4/T)

    1.0× 1020 T?1.5

    O2

    7.94× 1020 T?1.5exp(?7.55 ×10 4/T)

    2.0× 1021 T?1.5

    NO

    7.94× 1020 T?1.5exp(?7.55 ×10 4/T)

    2.0× 1021 T?1.5

    N

    7.94× 1020 T?1.5exp(?7.55 ×10 4/T)

    2.0× 1021 T?1.5

    O

    N2 +O? NO+N

    6.74× 1013 exp(?3.8× 104 /T)

    1.56× 1013

    NO+O ?O2+N

    3.18× 109 T?1.0exp( ?1.97× 104 /T)

    1.3× 1010 T?1.0×exp(? 3.58×103/ T)

  • 表2   网格无关性研究

    Grid change in I direction

    Grid change in J direction

    Grid case

    Mx

    Ny

    Grid case

    Mx

    Ny

    1

    201

    260

    1

    361

    00

    2

    251

    260

    2

    361

    50

    3

    301

    260

    3

    361

    00

    4

    401

    260

    4

    361

    00

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1