Suppression effects of laser bandwidth on stimulated Raman scattering instability in underdense plasma?

logo

SCIENTIA SINICA Physica, Mechanica & Astronomica, Volume 45, Issue 3: 035201(2015) https://doi.org/10.1360/SSPMA2014-00287

Suppression effects of laser bandwidth on stimulated Raman scattering instability in underdense plasma?

More info
  • ReceivedJul 24, 2014
  • AcceptedSep 23, 2014
  • PublishedJan 20, 2015
PACS numbers

Abstract

本文研究了激光带宽对等离子体中受激拉曼散射不稳定性激发的抑制效应. 通过改变激光参数和等离子体参数, 利用一维粒子模拟验证了当激光带宽远大于线性增长率时, 带宽对受激拉曼散射的线性增长阶段具有明显的抑制作用. 模拟研究同时表明通过选择适当的调频参数和降低受激拉曼散射的线性增长率可以使带宽的抑制效应更明显. 但是激光带宽并没有使受激拉曼散射完全消失, 其抑制作用主要体现在延长不稳定性线性增长的时间.


Funded by

国家自然科学基金资助项目(11129503)


Acknowledgment

作者感谢与中国工程物理研究院丁永坤研究员, 美国罗切斯特大学任闯教授的有益讨论.


References

[1] Fernandez J C, Cobble J A, Montgomery D S, et al. Observed insensitivity of stimulated Raman scattering on electron density. Phys Plasmas, 2000, 7: 3743-3750 CrossRef Google Scholar

[2] Thomson J J, Karush J I. Effects of finite-bandwidth driver on the parametric instability. Phys Fluids, 1974, 17: 1608-1613 CrossRef Google Scholar

[3] Obenschain S P, Luhmann N C Jr, Greiling P T. Effects of finite-bandwidth driver pumps on the parametric-decay instability. Phys Rev Lett, 1976, 36: 1309-1312 CrossRef Google Scholar

[4] Harper-Slaboszewicz V J, Mizuno K, Idehara T, et al. Finite bandwidth drive effect on the parametric decay instability near the lower hybrid frequency. Phys Fluids B, 1990, 2: 2525-2527 CrossRef Google Scholar

[5] Guzdar P N, Liu C S, Lehmberg R H. The effect of bandwidth on the convective Raman instability in inhomogeneous plasmas. Phys Fluids B, 1991, 3: 2882-2888 CrossRef Google Scholar

[6] Williams E A, Albritton J R, Rosenbluth M N. Effect of spatial turbulence on parametric instabilities. Phys Fluids, 1979, 22: 139-149 CrossRef Google Scholar

[7] 杨 冬. 啁啾激光抑制等离子体参量不稳定性的研究. 硕士学位论文. 绵阳: 中国工程物理研究院. 2009, Google Scholar

[8] 张 锐. 基于调频脉冲的光谱色散平滑技术研究. 硕士学位论文. 绵阳: 中国工程物理研究院. 2006, Google Scholar

[9] Gibbon P. Short Pulse Laser Interactions with Matter: An Introduction. London: Imperial College Press. 2005, Google Scholar

[10] Kruer W L. The Physics of Laser Plasma Interactions. Boulder Colorado: Westview Press. 1988, Google Scholar

[11] Winjum B J, Fahlen J E, Tsung F S, et al. Anomalously hot electrons due to rescatter of stimulated Raman scattering in the kinetic regime. Phys Rev Lett, 2013, 110: 165001 CrossRef Google Scholar

[12] Klimo O, Tikhonchuk V T. Laser-plasma interaction studies in the context of shock ignition: The regime dominated by parametric instabilities. Plasma Phys Control Fusion, 2013, 55: 095002 CrossRef Google Scholar

[13] Chapman T D. Autoresonance in Stimulated Raman Scattering. Dissertation for Doctoral Degree. Palaiseau: Ecole Polytechnique. 2012, Google Scholar

[14] Yin L, Albright B J, Bowers K J, et al. Saturation of backward stimulated scattering of laser in kinetic regime: Wavefront bowing, trapped particle modulational instability, and trapped particle self-focusing of plasma waves. Phys Plasmas, 2008, 15: 013109 CrossRef Google Scholar

[15] Rose H A, DuBois D F, Bezzerides B. Nonlinear coupling of simulated Raman and Brillouin scattering in laser-plasma interactions. Phys Rev Lett, 1987, 58: 2547-2550 CrossRef Google Scholar

[16] Benisti D, Gremillet L. Nonlinear plasma response to a slowly varying electrostatic wave, and application to stimulated Raman scattering. Phys Plasmas, 2007, 14: 042304 CrossRef Google Scholar

[17] Liang W X, Li Y T, Xu M H, et al. Study of hot electrons generated from intense laser-plasma interaction employing Image Plate. Sci China Ser G-Phys Mech Astron, 2008, 51: 1455-1462 CrossRef Google Scholar

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1