Robust quantum dialogue based on logical qubits and controlled-not operations

logo

SCIENTIA SINICA Physica, Mechanica & Astronomica, Volume 45, Issue 3: 030301(2015) https://doi.org/10.1360/SSPMA2014-00444

Robust quantum dialogue based on logical qubits and controlled-not operations

More info
  • ReceivedNov 18, 2014
  • AcceptedDec 18, 2014
  • PublishedJan 20, 2015
PACS numbers

Abstract

本文利用逻辑量子比特和控制非(Controlled-Not, CNOT)操作提出两个分别抵抗集体退相位噪声和集体旋转噪声的鲁棒量子对话(Quantum Dialogue, QD)协议. 制备方产生逻辑量子比特作为传输态以抵抗集体噪声. 另一方借助于CNOT操作知道逻辑量子比特的初始制备态, 并在制备方发送过来的一个经典信息序列的帮助下解码出制备方的秘密信息. 制备方借助于量子安全直接通信读出另一方的秘密信息. 这样, 信息泄露风险被有效地避免. 在所提出的协议中, 只有单光子测量被需要用于量子测量. 与之前的抗噪声QD协议相比, 所提出的协议具有最高的信息论效率. 与作者最近设计的需要将两个相邻的逻辑量子比特制备处于相同的量子态的QD协议相比, 所提出的协议在实验上更加容易执行, 因为它们没有这种特殊的要求.


Funded by

国家自然科学基金资助项目(61402407)


References

[1] Long G L, Liu X S. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys Rev A, 2002, 65: 032302 CrossRef Google Scholar

[2] Bostrom K, Felbinger T. Deterministic secure direct communication using entanglement. Phys Rev Lett, 2002, 89: 187902 CrossRef Google Scholar

[3] Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 2003, 68: 042317 CrossRef Google Scholar

[4] Deng F G, Long G L. Secure direct communication with a quantum one-time pad. Phys Rev A, 2004, 69: 052319 CrossRef Google Scholar

[5] Wang C, Deng F G, Li Y S, et al. Quantum secure direct communication with high-dimension quantum superdense coding. Phys Rev A, 2005, 71: 044305 CrossRef Google Scholar

[6] Wang C, Deng F G, Long G L. Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state. Opt Commun, 2005, 253: 15-20 CrossRef Google Scholar

[7] Li X H, Li C Y, Deng F G, et al. Quantum secure direct communication with quantum encryption based on pure entangled states. Chin Phys, 2007, 16: 2149-2153 CrossRef Google Scholar

[8] Chen X B, Wen Q Y, Guo F Z, et al. Controlled quantum secure direct communication with W state. Int J Quant Inform, 2008, 6: 899-906 CrossRef Google Scholar

[9] Gu B, Huang Y G, Fang X, et al. A two-step quantum secure direct communication protocol with hyperentanglement. Chin Phys B, 2011, 20: 100309 CrossRef Google Scholar

[10] Liu D, Chen J L, Jiang W. High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int J Theor Phys, 2012, 51: 2923-2929 CrossRef Google Scholar

[11] Ren B C, Wei H R, Hua M, et al. Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems. Eur Phys J D, 2013, 67: 30-37 CrossRef Google Scholar

[12] Nguyen B A. Quantum dialogue. Phys Lett A, 2004, 328: 6-10 CrossRef Google Scholar

[13] 13 Zhang Z J, Man Z X. Secure direct bidirectional communication protocol using the Einstein-Podolsky-Rosen pair block. arXiv:quant-ph/0403215. Google Scholar

[14] 14 Zhang Z J, Man Z X. Secure bidirectional quantum communication protocol without quantum channel. arXiv:quant-ph/0403217. Google Scholar

[15] Man Z X, Zhang Z J, Li Y. Quantum dialogue revisited. Chin Phys Lett, 2005, 22: 22-24 CrossRef Google Scholar

[16] Jin X R, Ji X, Zhang Y Q, et al. Three-party quantum secure direct communication based on GHZ states. Phys Lett A, 2006, 354: 67-70 CrossRef Google Scholar

[17] Man Z X, Xia Y J. Controlled bidirectional quantum direct communication by using a GHZ state. Chin Phys Lett, 2006, 23: 1680-1682 CrossRef Google Scholar

[18] Ji X, Zhang S. Secure quantum dialogue based on single-photon. Chin Phys, 2006, 15: 1418-1420 CrossRef Google Scholar

[19] Man Z X, Xia Y J, Nguyen B A. Quantum secure direct communication by using GHZ states and entanglement swapping. J Phys B-At Mol Opt Phys, 2006, 39: 3855-3863 CrossRef Google Scholar

[20] Man Z X, Xia Y J. Improvement of security of three-party quantum secure direct communication based on GHZ states. Chin Phys Lett, 2007, 24: 15-18 CrossRef Google Scholar

[21] Chen Y, Man Z X, Xia Y J. Quantum bidirectional secure direct communication via entanglement swapping. Chin Phys Lett, 2007, 24: 19-22 CrossRef Google Scholar

[22] Yang Y G, Wen Q Y. Quasi-secure quantum dialogue using single photons. Sci China Ser G-Phys Mech Astron, 2007, 50: 558-562 CrossRef Google Scholar

[23] Shan C J, Liu J B, Cheng W W, et al. Bidirectional quantum secure direct communication in driven cavity QED. Mod Phys Lett B, 2009, 23: 3225-3234 CrossRef Google Scholar

[24] Ye T Y, Jiang L Z. Improvement of controlled bidirectional quantum secure direct communication by using a GHZ state. Chin Phys Lett, 2013, 30: 040305 CrossRef Google Scholar

[25] Gao F, Qin S J, Wen Q Y, et al. Comment on: “Three-party quantum secure direct communication based on GHZ states”. Phys Lett A, 2008, 372: 3333-3336 CrossRef Google Scholar

[26] Gao F, Guo F Z, Wen Q Y, et al. Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication. Sci China Ser G-Phys Mech Astron, 2008, 51: 559-566 CrossRef Google Scholar

[27] Tan Y G, Cai Q Y. Classical correlation in quantum dialogue. Int J Quant Inform, 2008, 6: 325-329 CrossRef Google Scholar

[28] Shi G F, Xi X Q, Tian X L, et al. Bidirectional quantum secure communication based on a shared private Bell state. Opt Commun, 2009, 282: 2460-2463 CrossRef Google Scholar

[29] Shi G F. Bidirectional quantum secure communication scheme based on Bell states and auxiliary particles. Opt Commun, 2010, 283: 5275-5278 CrossRef Google Scholar

[30] Gao G. Two quantum dialogue protocols without information leakage. Opt Commun, 2010, 283: 2288-2293 CrossRef Google Scholar

[31] Shi G F, Xi X Q, Hu M L, et al. Quantum secure dialogue by using single photons. Opt Commun, 2010, 283: 1984-1986 CrossRef Google Scholar

[32] Shi G F, Tian X L. Quantum secure dialogue based on single photons and controlled-not operations. J Mod Opt, 2010, 57: 2027-2030 CrossRef Google Scholar

[33] Ye T Y. Large payload bidirectional quantum secure direct communication without information leakage. Int J Quant Inform, 2013, 11: 1350051 CrossRef Google Scholar

[34] Ye T Y, Jiang L Z. Quantum dialogue without information leakage based on the entanglement swapping between any two Bell states and the shared secret Bell state. Phys Scr, 2014, 89: 015103 CrossRef Google Scholar

[35] Ye T Y. Quantum secure dialogue with quantum encryption. Commun Theor Phys, 2014, 62: 338-342 CrossRef Google Scholar

[36] Ye T Y. Quantum dialogue without information leakage using a single quantum entangled state. Int J Theor Phys, 2014, 53: 3719-3727 CrossRef Google Scholar

[37] Zheng C, Long G F. Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs. Sci China-Phys Mech Astron, 2014, 57: 1238-1243 CrossRef Google Scholar

[38] Li X H, Deng F G, Zhou H Y. Efficient quantum key distribution over a collective noise channel. Phys Rev A, 2008, 78: 022321 CrossRef Google Scholar

[39] Li X H, Zhao B K, Sheng Y B, et al. Fault tolerant quantum key distribution based on quantum dense coding with collective noise. Int J Quant Inform, 2009, 7: 1479-1489 CrossRef Google Scholar

[40] Walton Z D, Abouraddy A F, Sergienko A V, et al. Decoherence-free subspaces in quantum key distribution. Phys Rev Lett, 2003, 91: 087901 CrossRef Google Scholar

[41] Boileau J C, Gottesman D, Laflamme R, et al. Robust polarization-based quantum key distribution over a collective-noise channel. Phys Rev Lett, 2004, 92: 017901 CrossRef Google Scholar

[42] Zhang Z J. Robust multiparty quantum secret key sharing over two collective-noise channels. Physica A, 2006, 361: 233-238 CrossRef Google Scholar

[43] Gu B, Pei S X, Song B, et al. Deterministic secure quantum communication over a collective-noise channel. Sci China Ser G-Phys Mech Astron, 2009, 52: 1913-1918 CrossRef Google Scholar

[44] Gu B, Mu L L, Ding L G, et al. Fault tolerant three-party quantum secret sharing against collective noise. Opt Commun, 2010, 283: 3099-3103 CrossRef Google Scholar

[45] Yang C W, Tsai C W, Hwang T. Fault tolerant two-step quantum secure direct communication protocol against collective noises. Sci China-Phys Mech Astron, 2011, 54: 496-501 CrossRef Google Scholar

[46] Gu B, Zhang C Y, Cheng G S, et al. Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci China-Phys Mech Astron, 2011, 54: 942-947 CrossRef Google Scholar

[47] Yang C W, Hwang T. Quantum dialogue protocols immune to collective noise. Quantum Inf Process, 2013, 12: 2131-2142 CrossRef Google Scholar

[48] Lin J, Hwang T. Bell state entanglement swappings over collective noises and their applications on quantum cryptography. Quantum Inf Process, 2013, 12: 1089-1107 CrossRef Google Scholar

[49] Ye T Y. Information leakage resistant quantum dialogue against collective noise. Sci China-Phys Mech Astron, 2014, 57: 2266-2275 CrossRef Google Scholar

[50] 叶 天语. 基于一个共享辅助逻辑Bell态的抗集体噪声鲁棒量子对话. 中国科学: 物理学 力学 天文学, 2015, 45(4): 040301 Google Scholar

[51] Li C Y, Zhou H Y, Wang Y, et al. Secure quantum key distribution network with Bell states and local unitary operations. Chin Phys Lett, 2005, 22: 1049-1052 CrossRef Google Scholar

[52] Li C Y, Li X H, Deng F G, et al. Efficient quantum cryptography network without entanglement and quantum memory. Chin Phys Lett, 2006, 23: 2896-2899 CrossRef Google Scholar

[53] Cai Q Y. Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys Lett A, 2006, 351: 23-25 CrossRef Google Scholar

[54] Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography. Rev Mod Phys, 2002, 74: 145-195 CrossRef Google Scholar

[55] Li X H, Deng F G, Zhou H Y. Improving the security of secure direct communication based on the secret transmitting order of particles. Phys Rev A, 2006, 74: 054302 CrossRef Google Scholar

[56] Gao F, Wen Q Y, Zhu F C. Comment on “Quantum exam”. Phys Lett A, 2007, 360: 748-750 CrossRef Google Scholar

[57] Cabello A. Quantum key distribution in the Holevo limit. Phys Rev Lett, 2000, 85: 5635-5638 CrossRef Google Scholar

  • 表1   Bob解码Alice秘密消息的原理

    物理量

    量子态或经典比特

    | Li ?的初态

    |0dp ?

    |1dp ?

    | Bi ?的初态

    |0?

    |0?

    CNOT操作后| Bi ?的状态

    |0?

    |1?

    bi

    0

    1

    ki

    0

    1

    0

    1

    ti

    0

    1

    1

    0

    bi ti

    0

    1

    0

    1

  • 表2   Bob解码Alice秘密信息的原理

    物理量

    量子态或经典比特

    | Li ?的初态

    |0r?

    |1r?

    | Bi ?的初态

    |0?

    |0?

    双重CNOT操作后| Bi ?的状态

    |0?

    |1?

    bi

    0

    1

    ki

    0

    1

    0

    1

    ti

    0

    1

    1

    0

    bi ti

    0

    1

    0

    1

  • 表3   与之前的抗噪声QD协议的对比

    对比项目

    文献[47]的协议

    文献[49]的协议

    文献[50]的协议

    本文的协议

    初始量子资源

    两个原始Bell态的乘积态

    逻辑量子比特

    逻辑Bell态

    逻辑量子比特和单光子

    量子测量

    Bell态测量

    单光子测量

    Bell态测量

    单光子测量

    信息论效率

    40%

    33.3%

    40%

    50%

    信息泄露问题

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1