Nonlinear resonance of bubble cluster driven by ultrasound

logo

SCIENTIA SINICA Physica, Mechanica & Astronomica, Volume 45, Issue 6: 064301(2015) https://doi.org/10.1360/SSPMA2015-00047

Nonlinear resonance of bubble cluster driven by ultrasound

More info
  • ReceivedJan 28, 2015
  • AcceptedMar 18, 2015
  • PublishedApr 17, 2015
PACS numbers

Abstract

由于次级声辐射的影响, 泡群内的气泡处于群振动状态. 基于气泡耦合振动方程, 利用逐级近似法分析了气泡非线性声响应, 得到了基频成分、一阶和二阶谐频成分、一阶和二阶次谐频成分的幅频关系式, 并以此为基础分析了气泡在基频共振区(w w0)、一阶和二阶谐频共振区(w w0/2, w w0/3)的声响应特征. 数值分析表明: 泡群内气泡数密度以及气泡初始半径对其共振声响应影响显着, 而气泡在泡群内所处的相对位置影响相对较小. 气泡的次谐频共振(w ≈2w0, w ≈3w0)只有在驱动压力幅值超过一定阈值后才可能发生, 且压力阈值随着气泡初始半径的增加而减小.


Funded by

国家自然科学基金(11204168)

国家留学基金和陕西省自然科学基金资助项目(2013JQ1017)


References

[1] Yasui K, Iida Y, Tuziuti T, et al. Strongly interacting bubbles under an ultrasonic horn. Phys Rev E, 2008, 77: 016609 CrossRef Google Scholar

[2] Kanthale P M, Gogate P R, Pandit A B, et al. Cavity cluster approach for quantification of cavitational intensity in sonochemical reactors. Ultrason Sonochem, 2003, 10: 181-189 CrossRef Google Scholar

[3] Brotchie A, Grieser F, Ashokkumar M. Effect of power and frequency on bubble-size distributions in acoustic cavitation. Phys Rev Lett, 2009, 102: 084302 CrossRef Google Scholar

[4] Wang C H, Cheng J C. The velocity field around two interacting cavitation bubbles in an ultrasound field. Sci China-Phys Mech Astron, 2013, 56: 1246-1252 CrossRef Google Scholar

[5] Birkin P R, Offin D G, Vian C J B, et al. Investigation of noninertial cavitation produced by anultrasonic horn. Acoust Soc Am, 2011, 130: 3297-3308 CrossRef Google Scholar

[6] Ida M, Naoe T, Futakawa M. Direct observation and theoretical study of cavitation bubbles in liquid mercury. Phys Rev E, 2007, 75: 046304 CrossRef Google Scholar

[7] Van der Kroon I, Quinto-Su P A, Li F, et al. Acoustically driven cavitation cluster collapse in planar geometry. Phys Rev E, 2010, 82: 066311 CrossRef Google Scholar

[8] Bjerknes V F K. Fields of Force. New York: Columbia University Press. 1906, Google Scholar

[9] Mettin R, Akhatov I, Parlitz U, et al. Bjerknes forces between small cavitation bubbles in a strong acoustic field. Phys Rev E, 1997, 56: 2914-2931 Google Scholar

[10] An Y. Nonlinear bubble dynamics of cavitation. Phys Rev E, 2012, 85: 016305 CrossRef Google Scholar

[11] Toytman I, Silbergleit A, Simanovski D, et al. Multifocal laser surgery: Cutting enhancement by hydrodynamic interactions between cavitation bubbles. Phys Rev E, 2010, 82: 046313 CrossRef Google Scholar

[12] An Y. Formulation of multibubble cavitation. Phys Rev E, 2011, 83: 066313 CrossRef Google Scholar

[13] Cai M, Zhao S, Liang H. Mechanisms for the enhancement of ultrafiltration and membrane cleaning by different ultrasonic frequencies. Desalination, 2010, 263: 133-138 CrossRef Google Scholar

[14] Yasui K, Towata A, Tuziuti T, et al. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound. Acoust Soc Am, 2011, 130: 3233-3242 CrossRef Google Scholar

[15] Sadighi-Bonabi R, Rezaee N, Ebrahimi H, et al. Interaction of two oscillating sonoluminescence bubbles in sulfuric acid. Phys Rev E, 2010, 82: 016316 CrossRef Google Scholar

[16] Rezaee N, Sadighi-Bonabi R, Mirheydari M, et al. Investigation of a mutual interaction force at different pressure amplitudes in sulfuric acid. Chin Phys B, 2011, 20: 087804 CrossRef Google Scholar

[17] Ida M. Bubble-bubble interaction: A potential source of cavitation noise. Phys Rev E, 2009, 79: 016307 CrossRef Google Scholar

[18] Zhang Y L, Zheng H R, Tang M X, et al. Effect of secondary radiation force on aggregation between encapsulated microbubbles. Chin Phys B, 2011, 20: 114302 CrossRef Google Scholar

[19] Jiang L, Liu F, Chen H S, et al. Frequency spectrum of the noise emitted by two interacting cavitation bubbles in strong acoustic fields. Phys Rev E, 2012, 85: 036312 CrossRef Google Scholar

[20] Wang C H, Cheng J C. Interaction of a bubble and a bubble cluster in an ultrasonic field. Chin Phys B, 2013, 22: 014304 CrossRef Google Scholar

[21] Prosperetti A. Nonlinear oscillations of gas bubbles in liquids: Steady-state solutions. Acoust Soc Am, 1974, 56: 878-885 CrossRef Google Scholar

[22] Prosperetti A. Nonlinear oscillations of gas bubbles in liquids: Transient solutions and the connection between subharmonic signal and cavitation. Acoust Soc Am, 1975, 57: 810-821 CrossRef Google Scholar

[23] Chen H, Kreider W, Brayman A A, et al. Blood vessel deformations on microsecond time scales by ultrasonic cavitation. Phys Rev Lett, 2011, 106: 034301 CrossRef Google Scholar

[24] Foteinopoulou K, Laso M. Numerical simulation of bubble dynamics in a Phan-Thien–Tanner liquid: Non-linear shape and size oscillatory response under periodic pressure. Ultrasonics, 2010, 50: 758-776 CrossRef Google Scholar

[25] 胡 静, 林 书玉, 王 成会, et al. 超声波作用下泡群的共振声响应. 物理学报, 2013, 62: 134303 Google Scholar

[26] 王 成会, 程 建春. 弹性管中泡群内气泡的非线性声响应. 物理学报, 2014, 63: 134301 Google Scholar

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1