References
[1]
Eom
K,
Park
H S,
Yoon
D S, et al.
Nanomechanical resonators and their applications in biological/chemical detection: Nanomechanics principles.
Phys Rep,
2011, 503: 115-163
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nanomechanical resonators and their applications in biological/chemical detection: Nanomechanics principles&author=Eom K&author=Park H S&author=Yoon D S&publication_year=2011&journal=Phys Rep&volume=503&pages=115-163
[2]
Wang
J X,
Huang
Z P,
Duan
H L, et al.
Surface stress effect in mechanics of nanostructured materials.
Acta Mech Solida Sin,
2011, 24: 52-82
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Surface stress effect in mechanics of nanostructured materials&author=Wang J X&author=Huang Z P&author=Duan H L&publication_year=2011&journal=Acta Mech Solida Sin&volume=24&pages=52-82
[3]
Mei
J,
Li
L J.
Frequency self-tuning of carbon nanotube resonator with application in mass sensors.
Sens Actuat B,
2013, 188: 661-668
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Frequency self-tuning of carbon nanotube resonator with application in mass sensors&author=Mei J&author=Li L J&publication_year=2013&journal=Sens Actuat B&volume=188&pages=661-668
[4]
Wang
G F,
Feng
X Q.
Effects of surface elasticity and residual surface tension on the natural frequency of micro beams.
Appl Phys Lett,
2007, 90: 231904
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Effects of surface elasticity and residual surface tension on the natural frequency of micro beams&author=Wang G F&author=Feng X Q&publication_year=2007&journal=Appl Phys Lett&volume=90&pages=231904
[5]
Li
J J,
Zhu
K D.
All-optical mass sensing with coupled mechanical resonator systems.
Phys Rep,
2013, 525: 223-254
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=All-optical mass sensing with coupled mechanical resonator systems&author=Li J J&author=Zhu K D&publication_year=2013&journal=Phys Rep&volume=525&pages=223-254
[6]
Zang
J,
Liu
F.
Modified Timoshenko formula for bending of ultrathin strained bilayer films.
Appl Phys Lett,
2008, 92: 021905
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Modified Timoshenko formula for bending of ultrathin strained bilayer films&author=Zang J&author=Liu F&publication_year=2008&journal=Appl Phys Lett&volume=92&pages=021905
[7]
Zang
J,
Huang
M H,
Liu
F.
Mechanism for nanotube formation from self-bending nanofilms driven by atomic-scale surface-stress imbalance.
Phys Rev Lett,
2007, 98: 146102
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mechanism for nanotube formation from self-bending nanofilms driven by atomic-scale surface-stress imbalance&author=Zang J&author=Huang M H&author=Liu F&publication_year=2007&journal=Phys Rev Lett&volume=98&pages=146102
[8]
Prinz
V Y,
Seleznev
V A,
Gutakovsky
A K, et al.
Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays.
Phys E,
2000, 6: 828-831
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays&author=Prinz V Y&author=Seleznev V A&author=Gutakovsky A K&publication_year=2000&journal=Phys E&volume=6&pages=828-831
[9]
Schmidt
O G,
EberI
K.
Nanotechnology: Thin solid films roll up into nanotubes.
Nature,
2001, 410: 168-168
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nanotechnology: Thin solid films roll up into nanotubes&author=Schmidt O G&author=EberI K&publication_year=2001&journal=Nature&volume=410&pages=168-168
[10]
Schmidt
O G,
Deneke
C,
Manz
Y M, et al.
Semiconductor tubes, rods and rings of nanometer and micrometer dimension.
Phys E,
2002, 13: 969-973
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Semiconductor tubes, rods and rings of nanometer and micrometer dimension&author=Schmidt O G&author=Deneke C&author=Manz Y M&publication_year=2002&journal=Phys E&volume=13&pages=969-973
[11]
Malachias
A,
Deneke
C,
Krause
B, et al.
Direct strain and elastic energy evaluation in rolled-up semiconductor tubes by x-ray microdiffraction.
Phys Rev B,
2009, 79: 035301
Google Scholar
http://scholar.google.com/scholar_lookup?title=Direct strain and elastic energy evaluation in rolled-up semiconductor tubes by x-ray microdiffraction&author=Malachias A&author=Deneke C&author=Krause B&publication_year=2009&journal=Phys Rev B&volume=79&pages=035301
[12]
Krause
B,
Mocuta
C,
Metzger
T H.
Local structure of a rolled-up single crystal: An x-ray microdiffraction study of individual semiconductor nanotubes.
Phys Rev Lett,
2006, 96: 165502
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Local structure of a rolled-up single crystal: An x-ray microdiffraction study of individual semiconductor nanotubes&author=Krause B&author=Mocuta C&author=Metzger T H&publication_year=2006&journal=Phys Rev Lett&volume=96&pages=165502
[13]
Balhorn
F,
Mansfeld
S,
Krohn
A, et al.
Spin-wave interference in three-dimensional rolled-up ferromagnetic microtubes.
Phys Rev Lett,
2010, 104: 037205
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Spin-wave interference in three-dimensional rolled-up ferromagnetic microtubes&author=Balhorn F&author=Mansfeld S&author=Krohn A&publication_year=2010&journal=Phys Rev Lett&volume=104&pages=037205
[14]
Mi
Z T,
Bianucci
P.
When self-organized In(Ga)As/GaAs quantum dot heterostructures roll up: Emerging devices and applications.
Current Opinion in Solid State and Mater Sci,
2012, 16: 52-58
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=When self-organized In(Ga)As/GaAs quantum dot heterostructures roll up: Emerging devices and applications&author=Mi Z T&author=Bianucci P&publication_year=2012&journal=Current Opinion in Solid State and Mater Sci&volume=16&pages=52-58
[15]
Demarina
N V,
Grützmacher
D A.
Electrical properties of rolled-up p-type Si/SiGe heterostructures.
Appl Phys Lett,
2011, 98: 192109
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Electrical properties of rolled-up p-type Si/SiGe heterostructures&author=Demarina N V&author=Grützmacher D A&publication_year=2011&journal=Appl Phys Lett&volume=98&pages=192109
[16]
Zhang
J H,
Li
M,
Gu
F, et al.
Influences of surface effects and large deformation on the resonant properties of ultrathin silicon nanocantilevers.
Chin Phys B,
2012, 21: 016203
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Influences of surface effects and large deformation on the resonant properties of ultrathin silicon nanocantilevers&author=Zhang J H&author=Li M&author=Gu F&publication_year=2012&journal=Chin Phys B&volume=21&pages=016203
[17]
Izumi
S,
Hara
S,
Kumagai
T, et al.
A method for calculating surface stress and surface elastic constants by molecular dynamics: Application to the surface of crystal and amorphous silicon.
Thin Solid Films,
2004, 467: 253-260
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A method for calculating surface stress and surface elastic constants by molecular dynamics: Application to the surface of crystal and amorphous silicon&author=Izumi S&author=Hara S&author=Kumagai T&publication_year=2004&journal=Thin Solid Films&volume=467&pages=253-260
[18]
Sadeghian
H,
Yang
C K,
Goosen
J F L, et al.
Effects of size and defects on the elasticity of silicon nanocantilevers.
J Micomech Microeng,
2010, 20: 064012
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Effects of size and defects on the elasticity of silicon nanocantilevers&author=Sadeghian H&author=Yang C K&author=Goosen J F L&publication_year=2010&journal=J Micomech Microeng&volume=20&pages=064012
[19]
Gong
B M,
Chen
Q,
Wang
D P.
Molecular dynamics study on size-dependent elastic properties of silicon nanoplates.
Mater Lett,
2012, 67: 165-168
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Molecular dynamics study on size-dependent elastic properties of silicon nanoplates&author=Gong B M&author=Chen Q&author=Wang D P&publication_year=2012&journal=Mater Lett&volume=67&pages=165-168
[20]
Liu
F,
Lagally
M G.
Interplay of stress, structure, and stoichiometry in Ge-covered Si(001).
Phys Rev Lett,
1996, 76: 3156-3159
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Interplay of stress, structure, and stoichiometry in Ge-covered Si(001)&author=Liu F&author=Lagally M G&publication_year=1996&journal=Phys Rev Lett&volume=76&pages=3156-3159
[21]
Cammarata
R C.
Surface and interface stress effects in thin films.
Prog Surf Sci,
1994, 46: 1-38
Google Scholar
http://scholar.google.com/scholar_lookup?title=Surface and interface stress effects in thin films&author=Cammarata R C&publication_year=1994&journal=Prog Surf Sci&volume=46&pages=1-38
[22]
Nilsson
S G,
Borrisé
X,
Montelius
L.
Size effect on Young’s modulus of thin chromium cantilevers.
Appl Phys Lett,
2004, 85: 3555-3557
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Size effect on Young’s modulus of thin chromium cantilevers&author=Nilsson S G&author=Borrisé X&author=Montelius L&publication_year=2004&journal=Appl Phys Lett&volume=85&pages=3555-3557
[23]
Nam
C Y,
Jaroenapibal
P,
Tham
D, et al.
Diameter-dependent electromechanical properties of GaN nanowires.
Nano Lett,
2006, 6: 153-158
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Diameter-dependent electromechanical properties of GaN nanowires&author=Nam C Y&author=Jaroenapibal P&author=Tham D&publication_year=2006&journal=Nano Lett&volume=6&pages=153-158
[24]
Jing
G Y,
Duan
H L,
Sun
X M, et al.
Surface effects on elastic properties of silver nanowires: Contact atomic-force microscopy.
Phys Rev B,
2006, 73: 235409
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Surface effects on elastic properties of silver nanowires: Contact atomic-force microscopy&author=Jing G Y&author=Duan H L&author=Sun X M&publication_year=2006&journal=Phys Rev B&volume=73&pages=235409
[25]
Stan
G,
Krylyuk
S,
Davydov
A V, et al.
Surface effects on the elastic modulus of Te nanowires.
Appl Phys Lett,
2008, 92: 241908
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Surface effects on the elastic modulus of Te nanowires&author=Stan G&author=Krylyuk S&author=Davydov A V&publication_year=2008&journal=Appl Phys Lett&volume=92&pages=241908
[26]
Tan
E P S,
Zhu
Y,
Yu
T, et al.
Crystallinity and surface effects on Young’s modulus of CuO nanowires.
Appl Phys Lett,
2007, 90: 163112
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Crystallinity and surface effects on Young’s modulus of CuO nanowires&author=Tan E P S&author=Zhu Y&author=Yu T&publication_year=2007&journal=Appl Phys Lett&volume=90&pages=163112
[27]
Chen
C Q,
Shi
Y,
Zhang
Y S, et al.
Size dependent of Young’s modulus in ZnO nanowires.
Phys Rev Lett,
2006, 96: 075505
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Size dependent of Young’s modulus in ZnO nanowires&author=Chen C Q&author=Shi Y&author=Zhang Y S&publication_year=2006&journal=Phys Rev Lett&volume=96&pages=075505
[28]
Wu
B,
Heidelberg
A,
Boland
J J.
Mechanical properties of ultrahigh-strength gold nanowires.
Nat Meter,
2005, 4: 525-529
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mechanical properties of ultrahigh-strength gold nanowires&author=Wu B&author=Heidelberg A&author=Boland J J&publication_year=2005&journal=Nat Meter&volume=4&pages=525-529
[29]
Davami
K,
Mortazavi
B,
Ghassemi
H M, et al.
A computational and experimental investigation of the mechanical properties of single ZnTe nanowires.
Nanoscale,
2012, 4: 897-903
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A computational and experimental investigation of the mechanical properties of single ZnTe nanowires&author=Davami K&author=Mortazavi B&author=Ghassemi H M&publication_year=2012&journal=Nanoscale&volume=4&pages=897-903
[30]
Gurtin
M E,
Murdoch
A I.
A continuum theory of elastic material surfaces.
Arch Rat Mech Anal,
1975, 57: 291-323
Google Scholar
http://scholar.google.com/scholar_lookup?title=A continuum theory of elastic material surfaces&author=Gurtin M E&author=Murdoch A I&publication_year=1975&journal=Arch Rat Mech Anal&volume=57&pages=291-323
[31]
Miller
R E,
Shenoy
V B.
Size-dependent elastic properties of nanosized structural elements.
Nanotechnology,
2000, 11: 139-147
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Size-dependent elastic properties of nanosized structural elements&author=Miller R E&author=Shenoy V B&publication_year=2000&journal=Nanotechnology&volume=11&pages=139-147
[32]
Sadeghian
H,
Goosen
J F L,
Bossche
A, et al.
Surface stress-induced change in overall elastic behavior and self-bending of ultrathin cantilever plates.
Appl Phys Lett,
2009, 94: 231908
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Surface stress-induced change in overall elastic behavior and self-bending of ultrathin cantilever plates&author=Sadeghian H&author=Goosen J F L&author=Bossche A&publication_year=2009&journal=Appl Phys Lett&volume=94&pages=231908
[33]
Wang
J S,
Shimada
T,
Wang
G F, et al.
Effects of chirality and surface stresses on the bending and buckling of chiral nanowires.
J Phys D-Appl Phys,
2014, 47: 015302
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Effects of chirality and surface stresses on the bending and buckling of chiral nanowires&author=Wang J S&author=Shimada T&author=Wang G F&publication_year=2014&journal=J Phys D-Appl Phys&volume=47&pages=015302
[34]
Liang
X,
Hu
S L,
Shen
S P.
Effects of surface and flexoelectricity on a piezoelectric nanobeam.
Smart Mater Struct,
2014, 23: 035020
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Effects of surface and flexoelectricity on a piezoelectric nanobeam&author=Liang X&author=Hu S L&author=Shen S P&publication_year=2014&journal=Smart Mater Struct&volume=23&pages=035020
[35]
Hao
F,
Fang
D N.
Modeling of magnetoelectric effects in flexural nanobilayers: The effects of surface stress.
J Appl Phys,
2013, 113: 104103
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Modeling of magnetoelectric effects in flexural nanobilayers: The effects of surface stress&author=Hao F&author=Fang D N&publication_year=2013&journal=J Appl Phys&volume=113&pages=104103
[36]
Yao
H Y,
Yun
G H,
Bai
N S, et al.
Effect of surface elasticity on the piezoelectric potential of a bent ZnO nanowire.
Jpn J Appl Phys,
2012, 51: 075001
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Effect of surface elasticity on the piezoelectric potential of a bent ZnO nanowire&author=Yao H Y&author=Yun G H&author=Bai N S&publication_year=2012&journal=Jpn J Appl Phys&volume=51&pages=075001
[37]
Yao
H Y,
Yun
G H.
The effect of nonuniform surface elasticity on buckling of ZnO nanowires.
Phys E,
2012, 44: 1916-1919
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The effect of nonuniform surface elasticity on buckling of ZnO nanowires&author=Yao H Y&author=Yun G H&publication_year=2012&journal=Phys E&volume=44&pages=1916-1919
[38]
Yao
H Y,
Yun
G H,
Bai
N S, et al.
Surface elasticity effect on the size-dependent elastic property of nanowires.
J Appl Phys,
2012, 111: 083506
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Surface elasticity effect on the size-dependent elastic property of nanowires&author=Yao H Y&author=Yun G H&author=Bai N S&publication_year=2012&journal=J Appl Phys&volume=111&pages=083506
[39]
Yao
H Y,
Yun
G H,
Fan
W L.
Size effect of the elastic modulus of rectangular nanobeams: Surface elasticity effect.
Chin Phys B,
2013, 22: 106201
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Size effect of the elastic modulus of rectangular nanobeams: Surface elasticity effect&author=Yao H Y&author=Yun G H&author=Fan W L&publication_year=2013&journal=Chin Phys B&volume=22&pages=106201
[40]
Yao
H Y,
Yun
G H,
Bai
N S.
Influence of exponentially increasing surface elasticity on the piezoelectric potential of a bent ZnO nanowire.
J Phys D-Appl Phys,
2012, 45: 285304
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Influence of exponentially increasing surface elasticity on the piezoelectric potential of a bent ZnO nanowire&author=Yao H Y&author=Yun G H&author=Bai N S&publication_year=2012&journal=J Phys D-Appl Phys&volume=45&pages=285304
[41]
Hsin
C L,
Mai
W J,
Gu
Y D, et al.
Elastic properties and buckling of silicon nanowires.
Adv Mater,
2008, 20: 3919-3923
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Elastic properties and buckling of silicon nanowires&author=Hsin C L&author=Mai W J&author=Gu Y D&publication_year=2008&journal=Adv Mater&volume=20&pages=3919-3923
[42]
Gordon
M J,
Baron
T,
Dhalluin
F, et al.
Size effects in mechanical deformation and fracture of cantilevered silicon nanowires.
Nano Lett,
2009, 9: 525-529
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Size effects in mechanical deformation and fracture of cantilevered silicon nanowires&author=Gordon M J&author=Baron T&author=Dhalluin F&publication_year=2009&journal=Nano Lett&volume=9&pages=525-529
[43]
Wang
Z L,
Dai
Z R,
Gao
R P, et al.
Measuring the Young’s modulus of solid nanowires by in situ TEM.
J Electron Misrosc,
2002, 51: S79-S85
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Measuring the Young’s modulus of solid nanowires by in situ TEM&author=Wang Z L&author=Dai Z R&author=Gao R P&publication_year=2002&journal=J Electron Misrosc&volume=51&pages=S79-S85
[44]
Yasumura
K Y,
Stowe
T D,
Chow
E M, et al.
Quality factors in micron- and submicron-thick cantilevers.
J Mecroelectromech Syst,
2000, 9: 117-125
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quality factors in micron- and submicron-thick cantilevers&author=Yasumura K Y&author=Stowe T D&author=Chow E M&publication_year=2000&journal=J Mecroelectromech Syst&volume=9&pages=117-125
[45]
Stoney
G G.
The tension of metallic films deposited by electrolysis.
Proc R Soc Lond A,
1909, 82: 172-175
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The tension of metallic films deposited by electrolysis&author=Stoney G G&publication_year=1909&journal=Proc R Soc Lond A&volume=82&pages=172-175
[46]
Shao
S S,
Xuan
F Z,
Wang
Z D, et al.
Synthesis surface effects on the stress and deformation film/substrate system.
Appl Surf Sci,
2011, 257: 9915-9920
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Synthesis surface effects on the stress and deformation film/substrate system&author=Shao S S&author=Xuan F Z&author=Wang Z D&publication_year=2011&journal=Appl Surf Sci&volume=257&pages=9915-9920
[47]
Weissmüller
J,
Duan
H L.
Cantilever bending with rough surfaces.
Phys Rev Lett,
2008, 101: 146102
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cantilever bending with rough surfaces&author=Weissmüller J&author=Duan H L&publication_year=2008&journal=Phys Rev Lett&volume=101&pages=146102