Size-dependent Young’s modulus and surface stress-induced bending of nanofilms

logo

SCIENTIA SINICA Physica, Mechanica & Astronomica, Volume 45, Issue 8: 086801(2015) https://doi.org/10.1360/SSPMA2015-00074

Size-dependent Young’s modulus and surface stress-induced bending of nanofilms

More info
  • ReceivedFeb 15, 2015
  • AcceptedMar 31, 2015
  • PublishedJul 2, 2015
PACS numbers

Abstract

考虑纳米薄膜表面弹性及其作用厚度得到了纳米薄膜尺度依赖的杨氏模量的表达式. 通过考虑表面层厚度, 引入了表面效应的二级和三级修正, 这有助于对纳米薄膜弹性性质进行更深入的研究. 针对纳米薄膜上、下两个表面上表面应力不平衡的情况, 由能量极小原理得到了表面应力导致的单层纳米薄膜的弯曲公式. 通过将本文弹性(及弯曲)理论同前人工作进行比较, 研究了表面层厚度对薄膜弹性性质影响的规律, 揭示了本文理论与前人理论的内在联系.


Funded by

内蒙古自治区高校青年科技英才计划资助项目(NJYT-12-B07)

国家自然科学基金(11072104)


References

[1] Eom K, Park H S, Yoon D S, et al. Nanomechanical resonators and their applications in biological/chemical detection: Nanomechanics principles. Phys Rep, 2011, 503: 115-163 CrossRef Google Scholar

[2] Wang J X, Huang Z P, Duan H L, et al. Surface stress effect in mechanics of nanostructured materials. Acta Mech Solida Sin, 2011, 24: 52-82 CrossRef Google Scholar

[3] Mei J, Li L J. Frequency self-tuning of carbon nanotube resonator with application in mass sensors. Sens Actuat B, 2013, 188: 661-668 CrossRef Google Scholar

[4] Wang G F, Feng X Q. Effects of surface elasticity and residual surface tension on the natural frequency of micro beams. Appl Phys Lett, 2007, 90: 231904 CrossRef Google Scholar

[5] Li J J, Zhu K D. All-optical mass sensing with coupled mechanical resonator systems. Phys Rep, 2013, 525: 223-254 CrossRef Google Scholar

[6] Zang J, Liu F. Modified Timoshenko formula for bending of ultrathin strained bilayer films. Appl Phys Lett, 2008, 92: 021905 CrossRef Google Scholar

[7] Zang J, Huang M H, Liu F. Mechanism for nanotube formation from self-bending nanofilms driven by atomic-scale surface-stress imbalance. Phys Rev Lett, 2007, 98: 146102 CrossRef Google Scholar

[8] Prinz V Y, Seleznev V A, Gutakovsky A K, et al. Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays. Phys E, 2000, 6: 828-831 CrossRef Google Scholar

[9] Schmidt O G, EberI K. Nanotechnology: Thin solid films roll up into nanotubes. Nature, 2001, 410: 168-168 CrossRef Google Scholar

[10] Schmidt O G, Deneke C, Manz Y M, et al. Semiconductor tubes, rods and rings of nanometer and micrometer dimension. Phys E, 2002, 13: 969-973 CrossRef Google Scholar

[11] Malachias A, Deneke C, Krause B, et al. Direct strain and elastic energy evaluation in rolled-up semiconductor tubes by x-ray microdiffraction. Phys Rev B, 2009, 79: 035301 Google Scholar

[12] Krause B, Mocuta C, Metzger T H. Local structure of a rolled-up single crystal: An x-ray microdiffraction study of individual semiconductor nanotubes. Phys Rev Lett, 2006, 96: 165502 CrossRef Google Scholar

[13] Balhorn F, Mansfeld S, Krohn A, et al. Spin-wave interference in three-dimensional rolled-up ferromagnetic microtubes. Phys Rev Lett, 2010, 104: 037205 CrossRef Google Scholar

[14] Mi Z T, Bianucci P. When self-organized In(Ga)As/GaAs quantum dot heterostructures roll up: Emerging devices and applications. Current Opinion in Solid State and Mater Sci, 2012, 16: 52-58 CrossRef Google Scholar

[15] Demarina N V, Grützmacher D A. Electrical properties of rolled-up p-type Si/SiGe heterostructures. Appl Phys Lett, 2011, 98: 192109 CrossRef Google Scholar

[16] Zhang J H, Li M, Gu F, et al. Influences of surface effects and large deformation on the resonant properties of ultrathin silicon nanocantilevers. Chin Phys B, 2012, 21: 016203 CrossRef Google Scholar

[17] Izumi S, Hara S, Kumagai T, et al. A method for calculating surface stress and surface elastic constants by molecular dynamics: Application to the surface of crystal and amorphous silicon. Thin Solid Films, 2004, 467: 253-260 CrossRef Google Scholar

[18] Sadeghian H, Yang C K, Goosen J F L, et al. Effects of size and defects on the elasticity of silicon nanocantilevers. J Micomech Microeng, 2010, 20: 064012 CrossRef Google Scholar

[19] Gong B M, Chen Q, Wang D P. Molecular dynamics study on size-dependent elastic properties of silicon nanoplates. Mater Lett, 2012, 67: 165-168 CrossRef Google Scholar

[20] Liu F, Lagally M G. Interplay of stress, structure, and stoichiometry in Ge-covered Si(001). Phys Rev Lett, 1996, 76: 3156-3159 CrossRef Google Scholar

[21] Cammarata R C. Surface and interface stress effects in thin films. Prog Surf Sci, 1994, 46: 1-38 Google Scholar

[22] Nilsson S G, Borrisé X, Montelius L. Size effect on Young’s modulus of thin chromium cantilevers. Appl Phys Lett, 2004, 85: 3555-3557 CrossRef Google Scholar

[23] Nam C Y, Jaroenapibal P, Tham D, et al. Diameter-dependent electromechanical properties of GaN nanowires. Nano Lett, 2006, 6: 153-158 CrossRef Google Scholar

[24] Jing G Y, Duan H L, Sun X M, et al. Surface effects on elastic properties of silver nanowires: Contact atomic-force microscopy. Phys Rev B, 2006, 73: 235409 CrossRef Google Scholar

[25] Stan G, Krylyuk S, Davydov A V, et al. Surface effects on the elastic modulus of Te nanowires. Appl Phys Lett, 2008, 92: 241908 CrossRef Google Scholar

[26] Tan E P S, Zhu Y, Yu T, et al. Crystallinity and surface effects on Young’s modulus of CuO nanowires. Appl Phys Lett, 2007, 90: 163112 CrossRef Google Scholar

[27] Chen C Q, Shi Y, Zhang Y S, et al. Size dependent of Young’s modulus in ZnO nanowires. Phys Rev Lett, 2006, 96: 075505 CrossRef Google Scholar

[28] Wu B, Heidelberg A, Boland J J. Mechanical properties of ultrahigh-strength gold nanowires. Nat Meter, 2005, 4: 525-529 CrossRef Google Scholar

[29] Davami K, Mortazavi B, Ghassemi H M, et al. A computational and experimental investigation of the mechanical properties of single ZnTe nanowires. Nanoscale, 2012, 4: 897-903 CrossRef Google Scholar

[30] Gurtin M E, Murdoch A I. A continuum theory of elastic material surfaces. Arch Rat Mech Anal, 1975, 57: 291-323 Google Scholar

[31] Miller R E, Shenoy V B. Size-dependent elastic properties of nanosized structural elements. Nanotechnology, 2000, 11: 139-147 CrossRef Google Scholar

[32] Sadeghian H, Goosen J F L, Bossche A, et al. Surface stress-induced change in overall elastic behavior and self-bending of ultrathin cantilever plates. Appl Phys Lett, 2009, 94: 231908 CrossRef Google Scholar

[33] Wang J S, Shimada T, Wang G F, et al. Effects of chirality and surface stresses on the bending and buckling of chiral nanowires. J Phys D-Appl Phys, 2014, 47: 015302 CrossRef Google Scholar

[34] Liang X, Hu S L, Shen S P. Effects of surface and flexoelectricity on a piezoelectric nanobeam. Smart Mater Struct, 2014, 23: 035020 CrossRef Google Scholar

[35] Hao F, Fang D N. Modeling of magnetoelectric effects in flexural nanobilayers: The effects of surface stress. J Appl Phys, 2013, 113: 104103 CrossRef Google Scholar

[36] Yao H Y, Yun G H, Bai N S, et al. Effect of surface elasticity on the piezoelectric potential of a bent ZnO nanowire. Jpn J Appl Phys, 2012, 51: 075001 CrossRef Google Scholar

[37] Yao H Y, Yun G H. The effect of nonuniform surface elasticity on buckling of ZnO nanowires. Phys E, 2012, 44: 1916-1919 CrossRef Google Scholar

[38] Yao H Y, Yun G H, Bai N S, et al. Surface elasticity effect on the size-dependent elastic property of nanowires. J Appl Phys, 2012, 111: 083506 CrossRef Google Scholar

[39] Yao H Y, Yun G H, Fan W L. Size effect of the elastic modulus of rectangular nanobeams: Surface elasticity effect. Chin Phys B, 2013, 22: 106201 CrossRef Google Scholar

[40] Yao H Y, Yun G H, Bai N S. Influence of exponentially increasing surface elasticity on the piezoelectric potential of a bent ZnO nanowire. J Phys D-Appl Phys, 2012, 45: 285304 CrossRef Google Scholar

[41] Hsin C L, Mai W J, Gu Y D, et al. Elastic properties and buckling of silicon nanowires. Adv Mater, 2008, 20: 3919-3923 CrossRef Google Scholar

[42] Gordon M J, Baron T, Dhalluin F, et al. Size effects in mechanical deformation and fracture of cantilevered silicon nanowires. Nano Lett, 2009, 9: 525-529 CrossRef Google Scholar

[43] Wang Z L, Dai Z R, Gao R P, et al. Measuring the Young’s modulus of solid nanowires by in situ TEM. J Electron Misrosc, 2002, 51: S79-S85 CrossRef Google Scholar

[44] Yasumura K Y, Stowe T D, Chow E M, et al. Quality factors in micron- and submicron-thick cantilevers. J Mecroelectromech Syst, 2000, 9: 117-125 CrossRef Google Scholar

[45] Stoney G G. The tension of metallic films deposited by electrolysis. Proc R Soc Lond A, 1909, 82: 172-175 CrossRef Google Scholar

[46] Shao S S, Xuan F Z, Wang Z D, et al. Synthesis surface effects on the stress and deformation film/substrate system. Appl Surf Sci, 2011, 257: 9915-9920 CrossRef Google Scholar

[47] Weissmüller J, Duan H L. Cantilever bending with rough surfaces. Phys Rev Lett, 2008, 101: 146102 CrossRef Google Scholar

  • 图1

    (网络版彩图)考虑表面层厚度ts及表面杨氏模量Ys的纳米薄膜示意图. 图中表面附近透明绿色背景部分为有一定厚度ts的表面层. 坐标参考面选择为薄膜几何中间面

  • 图2

    (网络版彩图)Si纳米薄膜的杨氏模量Yf随薄膜厚度t的变化曲线, 实验细节可参阅文献[18]

  • 图3

    (a) 不考虑表面层厚度ts时, 不同的表面弹性系数S对杨氏模量Yf的影响; (b) 当表面弹性系数S取一定值时, 不同的表面层厚度ts对杨氏模量Yf的影响

  • 图4

    (网络版彩图)Si纳米薄膜由上、下表面应力不平衡所导致的弯曲曲率随纳米薄膜厚度的变化曲线. 作为比较, 经典Stoney公式即S =0 的曲线亦在图中画出. (a) 考虑表面层厚度ts时Si纳米薄膜的弯曲曲率; (b) 不考虑表面层厚度时不同表面弹性S 对Si纳米薄膜弯曲曲率的影响

  • 图5

    当表面弹性S′取一定值时, 考虑表面层厚度ts, core-surface模型与经典Stoney公式曲率之间的对比. (a) 表面弹性系数为-188 N/m; (b) 表面弹性系数为-238 N/m; (c) 表面弹性系数为-470 N/m; (d) 表面弹性系数为-595 N/m

  • 图6

    纳米薄膜弯曲理论与分子动力学模拟Si纳米管半径R的对应比较. (a) 纵坐标采用自然坐标; (b) 纵坐标采用对数坐标. 分子动力学模拟纳米薄膜弯曲半径的详细内容可参阅文献[7].

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1