By utilizing the PFOPV material with the characteristic of exciton
states and Charge-Transfer States (CTS) coexisting, polymer light-emitting
device with structure of ITO/PEDOT:PSS/PFOPV/CsF/Al was fabricated,
and the magnetic field effects on current (magnetoconductance, MC)
were measured at different temperatures and bias voltages. We found
that positive-negative inversion of MC could be tuned via modifying
the ratio of exciton states to CTS, i.e., when the relative proportion
of CTS was quite high in the device, the MC at both high fields (>40
mT) and low fields (
中央高校基本科研业务费专项资金资助项目(XDJK2014C081)
重庆市科委自然科学基金(CSTC2010BA6002)
国家自然科学基金(11374242)
[1] Kalinowski J, Cocchi M, Virgili D, et al. Magnetic field effects on emission and current in Alq3-based electroluminescent diodes. Chem Phys Lett, 2003, 380: 710-715 CrossRef Google Scholar
[2] Francis T L, Mermer ?, Veeraraghavan G, et al. Large magnetoresistance at room temperature in semiconducting polymer sandwich devices. New J Phys, 2004, 6: 185 CrossRef Google Scholar
[3] Mermer ?, Veeraraghavan G, Francis T, et al. Large magnetoresistance at room-temperature in small-molecular-weight organic semiconductor sandwich devices. Solid State Commun, 2005, 134: 631-636 CrossRef Google Scholar
[4] Nguyen T D, Sheng Y, Rybicki J, et al. Magnetic field-effects in bipolar, almost hole-only and almost electron-only tris-(8- hydroxyquinoline) aluminum devices. Phys Rev B, 2008, 77: 235209 CrossRef Google Scholar
[5] Hu B, Wu Y. Tuning magnetoresistance between positive and negative values in organic semiconductors. Nat Mater, 2007, 6: 985-991 CrossRef Google Scholar
[6] Desai P, Shakya P, Kreouzis T, et al. Magnetoresistance and efficiency measurement of Alq3-based OLEDs. Phys Rev B, 2007, 75: 094423 CrossRef Google Scholar
[7] Bobbert P A, Nguyen T D, Van Oost F W, et al. Bipolaron mechanism for organic magnetoresistance. Phys Rev Lett, 2007, 99: 216801 CrossRef Google Scholar
[8]
Wang
F,
B?ssler
H,
Vardeny
Z V.
Magnetic field effects in
[9] Zhang Y, Zhang Q M, Lei Y L, et al. Magnetoconductance response due to the triplet exciton-charge interaction in organic light-emitting diodes. Org Electron, 2013, 14: 2505-2509 CrossRef Google Scholar
[10] Janssen P, Cox M, Wouters S H, et al. Tuning organic magnetoresistance in polymer-fullerene blends by controlling spin reaction pathways. Nat Commun, 2013, 4: 1431-1442 CrossRef Google Scholar
[11] Cox M, Janssen P, Zhu F, et al. Traps and trions as origin of magnetoresistance in organic semiconductors. Phys Rev B, 2013, 88: 035202 Google Scholar
[12] Janssen P, Wouters S H W, Cox M, et al. The influence of the triplet exciton and charge transfer state energy alignment on organic magnetoresistance. Org Electron, 2014, 15: 743-750 CrossRef Google Scholar
[13] Wu C, Bull B, Szymanski C, et al. Multicolor conjugated polymer dots for biological fluorescence imaging. ACS Nano, 2008, 2: 2415-2423 CrossRef Google Scholar
[14] Hashim Z, Howes P, Green M. Luminescent quantum-dot-sized conjugated polymer nanoparticles-nanoparticle formation in a miniemulsion system. J Mater Chem, 2011, 21: 1797-1803 CrossRef Google Scholar
[15] 白 江文, 雷 衍连, 张 巧明, et al. Rubrene分子间距对有机发光二极管中单重态激子裂变过程的调控. 中国科学: 物理学 力学 天文学, 2013, 43: 1046-1051 Google Scholar
[16] Iwasaki Y, Osasa T, Asahi M, et al. Fractions of singlet and triplet excitons generated in organic light-emitting devices based on a polyphenylenevinylene derivative. Phys Rev B, 2006, 74: 195209 CrossRef Google Scholar
[17] 张 勇, 张 巧明, 刘 亚莉, et al. Alq3有机发光二极管中的正负磁电导转变. 科学通报, 2011, 56: 1425-1430 Google Scholar
[18] Chen P, Xiong Z H, Peng Q M, et al. Magneto-electroluminescence as a tool to discern the origin of delayed fluorescence: Reverse intersystem crossing or triplet-triplet annihilation? Adv Opt Mater, 2014, 2: 142–148. Google Scholar
[19] Peng Q M, Li A, Fan Y, et al. Studying the influence of triplet deactivation on the singlet-triplet inter-conversion in intra-molecular charge-transfer fluorescence-based OLEDs by magneto-electroluminescence. J Mater Chem C, 2014, 2: 6264-6268 CrossRef Google Scholar
[20] Shao M, Yan L, Li M, et al. Triplet-charge annihilation versus triplet-triplet annihilation in organic semiconductors. J Mater Chem C, 2013, 1: 1330-1336 CrossRef Google Scholar
图1
(网络版彩图)(a) PFOPV分子的化学结构; (b) PFOPV中各激发态的形成和自旋相关的转变过程; (c) 不同微观过程所对应的MC曲线线型
图2
(网络版彩图)(a) 器件在不同温度下的发光-电流-电压特性曲线; (b) 器件在300 K下的MC曲线随注入电流的变化; (c) 200 K下的MC实验曲线及其拟合曲线(红色实线), 为了清晰, 曲线已进行适当上下平移; (d) 200 K, 20
图3
(网络版彩图)(a) 器件在150 K时的MC实验曲线及其拟合结果; (b) 相关拟合参数随注入电流的变化; (c) 由3种不同过程共同作用而形成的一种MC(模拟)曲线线型; (d) 150 K时, EL谱随偏压(注入电流)的变化
图4
(网络版彩图)(a) 相关拟合参数随温度的变化情况; (b) 器件在不同温度下的EL谱, 所有曲线对第1峰归一化处理
Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有
京ICP备18024590号-1