References
[1]
Kim
D H,
Lu
N,
Ghaffari
R, et al.
Inorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics.
NPG Asia Mater,
2012, 4(4): e15
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Inorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics&author=Kim D H&author=Lu N&author=Ghaffari R&publication_year=2012&journal=NPG Asia Mater&volume=4&issue=4&pages=e15
[2]
Kim
D H,
Lu
N,
Huang
Y, et al.
Materials for stretchable electronics in bioinspired and biointegrated devices.
MRS Bull,
2012, 37: 226-235
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Materials for stretchable electronics in bioinspired and biointegrated devices&author=Kim D H&author=Lu N&author=Huang Y&publication_year=2012&journal=MRS Bull&volume=37&pages=226-235
[3]
Rogers
J A,
Someya
T,
Huang
Y.
Materials and mechanics for stretchable electronics.
Science,
2010, 327(5973): 1603-1607
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Materials and mechanics for stretchable electronics&author=Rogers J A&author=Someya T&author=Huang Y&publication_year=2010&journal=Science&volume=327&issue=5973&pages=1603-1607
[4]
Kim
D H,
Lu
N,
Ma
R, et al.
Epidermal electronics.
Science,
2011, 333(6044): 838-843
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Epidermal electronics&author=Kim D H&author=Lu N&author=Ma R&publication_year=2011&journal=Science&volume=333&issue=6044&pages=838-843
[5]
Webb
R C,
Bonifas
A P,
Behnaz
A, et al.
Ultrathin conformal devices for precise and continuous thermal characterization of human skin.
Nat Mater,
2013, 12(10): 938-944
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ultrathin conformal devices for precise and continuous thermal characterization of human skin&author=Webb R C&author=Bonifas A P&author=Behnaz A&publication_year=2013&journal=Nat Mater&volume=12&issue=10&pages=938-944
[6]
Kim
D H,
Viventi
J,
Amsden
J J, et al.
Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics.
Nat Mater,
2010, 9(6): 511-517
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics&author=Kim D H&author=Viventi J&author=Amsden J J&publication_year=2010&journal=Nat Mater&volume=9&issue=6&pages=511-517
[7]
Kim
D H,
Ghaffari
R,
Lu
N, et al.
Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy.
Proc Natl Acad Sci USA,
2012, 109(49): 19910-19915
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy&author=Kim D H&author=Ghaffari R&author=Lu N&publication_year=2012&journal=Proc Natl Acad Sci USA&volume=109&issue=49&pages=19910-19915
[8]
Jung
I,
Xiao
J,
Malyarchuk
V, et al.
Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability.
Proc Natl Acad Sci USA,
2011, 108(5): 1788-1793
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability&author=Jung I&author=Xiao J&author=Malyarchuk V&publication_year=2011&journal=Proc Natl Acad Sci USA&volume=108&issue=5&pages=1788-1793
[9]
Ko
H C,
Stoykovich
M P,
Song
J, et al.
A hemispherical electronic eye camera based on compressible silicon optoelectronics.
Nature,
2008, 454(7205): 748-753
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A hemispherical electronic eye camera based on compressible silicon optoelectronics&author=Ko H C&author=Stoykovich M P&author=Song J&publication_year=2008&journal=Nature&volume=454&issue=7205&pages=748-753
[10]
Song
Y M,
Xie
Y,
Malyarchuk
V, et al.
Digital cameras with designs inspired by the arthropod eye.
Nature,
2013, 497(7447): 95-99
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Digital cameras with designs inspired by the arthropod eye&author=Song Y M&author=Xie Y&author=Malyarchuk V&publication_year=2013&journal=Nature&volume=497&issue=7447&pages=95-99
[11]
Yoon
J,
Baca
A J,
Park
S I, et al.
Ultrathin silicon solar microcells for semitransparent, mechanically flexible andmicroconcentrator moduledesigns.
Nat Mater,
2008, 7(11): 907-915
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ultrathin silicon solar microcells for semitransparent, mechanically flexible andmicroconcentrator moduledesigns&author=Yoon J&author=Baca A J&author=Park S I&publication_year=2008&journal=Nat Mater&volume=7&issue=11&pages=907-915
[12]
Lee
J,
Wu
J,
Shi
M, et al.
Stretchable GaAs photovoltaics with designs that enable high areal coverage.
Adv Mater,
2011, 23(8): 986-991
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stretchable GaAs photovoltaics with designs that enable high areal coverage&author=Lee J&author=Wu J&author=Shi M&publication_year=2011&journal=Adv Mater&volume=23&issue=8&pages=986-991
[13]
Yu
K J,
Gao
L,
Park
J S, et al.
Light trapping in ultrathin monocrystalline silicon solar cells.
Adv Ener Mater,
2013, 3: 1401-1406
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Light trapping in ultrathin monocrystalline silicon solar cells&author=Yu K J&author=Gao L&author=Park J S&publication_year=2013&journal=Adv Ener Mater&volume=3&pages=1401-1406
[14]
Kim
R H,
Kim
D H,
Xiao
J, et al.
Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics.
Nat Mater,
2010, 9(11): 929-937
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics&author=Kim R H&author=Kim D H&author=Xiao J&publication_year=2010&journal=Nat Mater&volume=9&issue=11&pages=929-937
[15]
Kim
H S,
Brueckner
E,
Song
J, et al.
Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting.
Proc Natl Acad Sci USA,
2011, 108(25): 10072-10077
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting&author=Kim H S&author=Brueckner E&author=Song J&publication_year=2011&journal=Proc Natl Acad Sci USA&volume=108&issue=25&pages=10072-10077
[16]
Xu
S,
Zhang
Y,
Cho
J, et al.
Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems.
Nat Commun,
2013, 4: 1503
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems&author=Xu S&author=Zhang Y&author=Cho J&publication_year=2013&journal=Nat Commun&volume=4&pages=1503
[17]
Veselago
V G.
The electrodynamics of substances with simultaneously negative values of e and m.
Sov Phys Usp,
1968, 10(4): 509-514
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The electrodynamics of substances with simultaneously negative values of e and m&author=Veselago V G&publication_year=1968&journal=Sov Phys Usp&volume=10&issue=4&pages=509-514
[18]
Pendry
J B.
Negative refraction makes a perfect lens.
Phys Rev Lett,
2000, 85(18): 3966-3969
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Negative refraction makes a perfect lens&author=Pendry J B&publication_year=2000&journal=Phys Rev Lett&volume=85&issue=18&pages=3966-3969
[19]
Shelby
R A,
Smith
D R,
Schultz
S.
Experimental verification of a negative index of refraction.
Science,
2001, 292(5514): 77-79
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Experimental verification of a negative index of refraction&author=Shelby R A&author=Smith D R&author=Schultz S&publication_year=2001&journal=Science&volume=292&issue=5514&pages=77-79
[20]
Valentine
J,
Zhang
S,
Zentgraf
T, et al.
Three-dimensional optical metamaterial with a negative refractive index.
Nature,
2008, 455(7211): 376-380
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Three-dimensional optical metamaterial with a negative refractive index&author=Valentine J&author=Zhang S&author=Zentgraf T&publication_year=2008&journal=Nature&volume=455&issue=7211&pages=376-380
[21]
Shalaev
V M.
Optical negative-index metamaterials.
Nat Photon,
2007, 1(1): 41-48
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Optical negative-index metamaterials&author=Shalaev V M&publication_year=2007&journal=Nat Photon&volume=1&issue=1&pages=41-48
[22]
Soukoulis
C M,
Linden
S,
Wegener
M.
Negative refractive index at optical wavelengths.
Science,
2007, 315(5808): 47-49
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Negative refractive index at optical wavelengths&author=Soukoulis C M&author=Linden S&author=Wegener M&publication_year=2007&journal=Science&volume=315&issue=5808&pages=47-49
[23]
Zheludev
N I.
The road ahead for metamaterials.
Science,
2010, 328(5978): 582-583
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The road ahead for metamaterials&author=Zheludev N I&publication_year=2010&journal=Science&volume=328&issue=5978&pages=582-583
[24]
Soukoulis
C M,
Wegener
M.
Optical metamaterials: More bulky and less lossy.
Science,
2010, 330(6011): 1633-1634
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Optical metamaterials: More bulky and less lossy&author=Soukoulis C M&author=Wegener M&publication_year=2010&journal=Science&volume=330&issue=6011&pages=1633-1634
[25]
Boltasseva
A,
Atwater
H A.
Low-loss plasmonic metamaterials.
Science,
2011, 331: 290-291
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Low-loss plasmonic metamaterials&author=Boltasseva A&author=Atwater H A&publication_year=2011&journal=Science&volume=331&pages=290-291
[26]
Luk’yanchuk
B,
Zheludev
N I,
Maier
S A, et al.
The Fano resonance in plasmonic nanostructures and metamaterials.
Nat Mater,
2010, 9(9): 707-715
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The Fano resonance in plasmonic nanostructures and metamaterials&author=Luk’yanchuk B&author=Zheludev N I&author=Maier S A&publication_year=2010&journal=Nat Mater&volume=9&issue=9&pages=707-715
[27]
Fan
J A,
Wu
C,
Bao
K, et al.
Self-assembled plasmonic nanoparticle clusters.
Science,
2010, 328(5982): 1135-1138
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Self-assembled plasmonic nanoparticle clusters&author=Fan J A&author=Wu C&author=Bao K&publication_year=2010&journal=Science&volume=328&issue=5982&pages=1135-1138
[28]
Anker
J N,
Hall
W P,
Lyandres
O, et al.
Biosensing with plasmonic nanosensors.
Nat Mater,
2008, 7(6): 442-453
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Biosensing with plasmonic nanosensors&author=Anker J N&author=Hall W P&author=Lyandres O&publication_year=2008&journal=Nat Mater&volume=7&issue=6&pages=442-453
[29]
Stewart
M E,
Anderton
C R,
Thompson
L B, et al.
Nanostructured plasmonic sensors.
Chem Rev,
2008, 108(2): 494-521
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nanostructured plasmonic sensors&author=Stewart M E&author=Anderton C R&author=Thompson L B&publication_year=2008&journal=Chem Rev&volume=108&issue=2&pages=494-521
[30]
Kabashin
A V,
Evans
P,
Pastkovsky
S.
Plasmonic nanorod metamaterials for biosensing.
Nat Mater,
2009, 8(11): 867-871
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Plasmonic nanorod metamaterials for biosensing&author=Kabashin A V&author=Evans P&author=Pastkovsky S&publication_year=2009&journal=Nat Mater&volume=8&issue=11&pages=867-871
[31]
Liu
N,
Mesch
M,
Weiss
T, et al.
Infrared perfect absorber and its application as plasmonic sensor.
Nano Lett,
2010, 10(7): 2342-2348
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Infrared perfect absorber and its application as plasmonic sensor&author=Liu N&author=Mesch M&author=Weiss T&publication_year=2010&journal=Nano Lett&volume=10&issue=7&pages=2342-2348
[32]
Nie
S,
Emory
S R.
Probing single molecules and single nanoparticles by surface-enhanced Raman scattering.
Science,
1997, 275(5303): 1102-1106
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Probing single molecules and single nanoparticles by surface-enhanced Raman scattering&author=Nie S&author=Emory S R&publication_year=1997&journal=Science&volume=275&issue=5303&pages=1102-1106
[33]
Haes
A J,
Haynes
C L,
McFarland
A D, et al.
Plasmonic materials for surface-enhanced sensing and spectroscopy.
MRS Bull,
2005, 30(05): 368-375
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Plasmonic materials for surface-enhanced sensing and spectroscopy&author=Haes A J&author=Haynes C L&author=McFarland A D&publication_year=2005&journal=MRS Bull&volume=30&issue=05&pages=368-375
[34]
Le Ru
E,
Etchegoin
P.
Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects.
Oxford:
Elsevier.
2008,
Google Scholar
http://scholar.google.com/scholar_lookup?title=Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects&author=Le Ru E&author=Etchegoin P&publication_year=2008&
[35]
Kawata
S,
Inouye
Y,
Verma
P.
Plasmonics for near-field nano-imaging and superlensing.
Nat Photon,
2009, 3(7): 388-394
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Plasmonics for near-field nano-imaging and superlensing&author=Kawata S&author=Inouye Y&author=Verma P&publication_year=2009&journal=Nat Photon&volume=3&issue=7&pages=388-394
[36]
Schuller
J A,
Barnard
E S,
Cai
W, et al.
Plasmonics for extreme light concentration and manipulation.
Nat Mater,
2010, 9(3): 193-204
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Plasmonics for extreme light concentration and manipulation&author=Schuller J A&author=Barnard E S&author=Cai W&publication_year=2010&journal=Nat Mater&volume=9&issue=3&pages=193-204
[37]
Catchpole
K R,
Polman
A.
Plasmonic solar cells.
Opt Express,
2008, 16(26): 21793-21800
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Plasmonic solar cells&author=Catchpole K R&author=Polman A&publication_year=2008&journal=Opt Express&volume=16&issue=26&pages=21793-21800
[38]
Yen
T J,
Padilla
W J,
Fang
N, et al.
Terahertz magnetic response from artificial materials.
Science,
2004, 303(5663): 1494-1496
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Terahertz magnetic response from artificial materials&author=Yen T J&author=Padilla W J&author=Fang N&publication_year=2004&journal=Science&volume=303&issue=5663&pages=1494-1496
[39]
Paul
O,
Imhof
C,
Reinhard
B, et al.
Negative index bulk metamaterial at terahertz frequencies.
Opt Express,
2008, 16(9): 6736-6744
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Negative index bulk metamaterial at terahertz frequencies&author=Paul O&author=Imhof C&author=Reinhard B&publication_year=2008&journal=Opt Express&volume=16&issue=9&pages=6736-6744
[40]
Liu
N,
Guo
H,
Fu
L, et al.
Three-dimensional photonic metamaterials at optical frequencies.
Nat Mater,
2008, 7(1): 31-37
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Three-dimensional photonic metamaterials at optical frequencies&author=Liu N&author=Guo H&author=Fu L&publication_year=2008&journal=Nat Mater&volume=7&issue=1&pages=31-37
[41]
Valentine
J,
Zhang
S,
Zentgraf
T, et al.
Three-dimensional optical metamaterial with a negative refractive index.
Nature,
2008, 455(7211): 376-380
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Three-dimensional optical metamaterial with a negative refractive index&author=Valentine J&author=Zhang S&author=Zentgraf T&publication_year=2008&journal=Nature&volume=455&issue=7211&pages=376-380
[42]
Garcia-Meca
C,
Ortuno
R,
Rodriguez-Fortuno
F J.
Double-negative polarization-independent fishnet metamaterials in the visible spectrum.
Opt Lett,
2009, 34(10): 1603-1605
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Double-negative polarization-independent fishnet metamaterials in the visible spectrum&author=Garcia-Meca C&author=Ortuno R&author=Rodriguez-Fortuno F J&publication_year=2009&journal=Opt Lett&volume=34&issue=10&pages=1603-1605
[43]
Xiao
S M,
Chettiar
U K,
Kildishev
A V, et al.
Yellow-light negative-index metamaterials.
Opt Lett,
2009, 34(22): 3478-3480
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yellow-light negative-index metamaterials&author=Xiao S M&author=Chettiar U K&author=Kildishev A V&publication_year=2009&journal=Opt Lett&volume=34&issue=22&pages=3478-3480
[44]
Garcia-Meca
C,
Hurtado
J,
Martí
J, et al.
Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths.
Phys Rev Lett,
2011, 106(6): 067402
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths&author=Garcia-Meca C&author=Hurtado J&author=Martí J&publication_year=2011&journal=Phys Rev Lett&volume=106&issue=6&pages=067402
[45]
L?tters
J C,
Olthuis
W,
Veltink
P H, et al.
The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications.
J Micromech Microeng,
1997, 7(3): 145
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications&author=L?tters J C&author=Olthuis W&author=Veltink P H&publication_year=1997&journal=J Micromech Microeng&volume=7&issue=3&pages=145
[46]
Khodasevych
I E,
Shah
C M,
Sriram
S, et al.
Elastomeric silicone substrates for terahertz fishnet metamaterials.
Appl Phys Lett,
2012, 100(6): 061101
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Elastomeric silicone substrates for terahertz fishnet metamaterials&author=Khodasevych I E&author=Shah C M&author=Sriram S&publication_year=2012&journal=Appl Phys Lett&volume=100&issue=6&pages=061101
[47]
MacDonald
W A.
Engineered films for display technologies.
J Mater Chem,
2004, 14(1): 4-10
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Engineered films for display technologies&author=MacDonald W A&publication_year=2004&journal=J Mater Chem&volume=14&issue=1&pages=4-10
[48]
Lu
N,
Wang
X,
Suo
Z, et al.
Metal films on polymer substrates stretched beyond 50%.
Appl Phys Lett,
2007, 91(22): 221909
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Metal films on polymer substrates stretched beyond 50%&author=Lu N&author=Wang X&author=Suo Z&publication_year=2007&journal=Appl Phys Lett&volume=91&issue=22&pages=221909
[49]
Choi
M C,
Kim
Y,
Ha
C S.
Polymers for flexible displays: From material selection to device applications.
Prog Polym Sci,
2008, 33(6): 581-630
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Polymers for flexible displays: From material selection to device applications&author=Choi M C&author=Kim Y&author=Ha C S&publication_year=2008&journal=Prog Polym Sci&volume=33&issue=6&pages=581-630
[50]
Melik
R,
Unal
E,
Perkgoz
N K, et al.
Flexible metamaterials for wireless strain sensing.
Appl Phys Lett,
2009, 95(18): 181105
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Flexible metamaterials for wireless strain sensing&author=Melik R&author=Unal E&author=Perkgoz N K&publication_year=2009&journal=Appl Phys Lett&volume=95&issue=18&pages=181105
[51]
Lapine
M,
Powell
D,
Gorkunov
M, et al.
Structural tunability in metamaterials.
Appl Phys Lett,
2009, 95(8): 084105
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Structural tunability in metamaterials&author=Lapine M&author=Powell D&author=Gorkunov M&publication_year=2009&journal=Appl Phys Lett&volume=95&issue=8&pages=084105
[52]
Tao
H,
Strikwerda
A C,
Fan
K, et al.
Terahertz metamaterials on free-standing highly-flexible polyimide substrates.
J Phys D-Appl Phys,
2008, 41: 232004
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Terahertz metamaterials on free-standing highly-flexible polyimide substrates&author=Tao H&author=Strikwerda A C&author=Fan K&publication_year=2008&journal=J Phys D-Appl Phys&volume=41&pages=232004
[53]
Woo
J M,
Kim
D,
Hussain
S, et al.
Low-loss flexible bilayer metamaterials in THz regime.
Opt Express,
2014, 22(3): 2289-2298
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Low-loss flexible bilayer metamaterials in THz regime&author=Woo J M&author=Kim D&author=Hussain S&publication_year=2014&journal=Opt Express&volume=22&issue=3&pages=2289-2298
[54]
Chen
Z C,
Han
N R,
Pan
Z Y, et al.
Tunable resonance enhancement of multi-layer terahertz metamaterials fabricated by parallel laser micro-lens array lithography on flexible substrates.
Opt Mater Express,
2011, 1(2): 151-157
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tunable resonance enhancement of multi-layer terahertz metamaterials fabricated by parallel laser micro-lens array lithography on flexible substrates&author=Chen Z C&author=Han N R&author=Pan Z Y&publication_year=2011&journal=Opt Mater Express&volume=1&issue=2&pages=151-157
[55]
Han
N R,
Chen
Z C,
Lim
C S, et al.
Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates.
Opt Express,
2011, 19(8): 6990-6998
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates&author=Han N R&author=Chen Z C&author=Lim C S&publication_year=2011&journal=Opt Express&volume=19&issue=8&pages=6990-6998
[56]
Liang
L,
Jin
B,
Wu
J, et al.
A flexible wideband bandpass terahertz filter using multi-layer metamaterials.
Appl Phys B,
2013, 113(2): 285-290
Google Scholar
http://scholar.google.com/scholar_lookup?title=A flexible wideband bandpass terahertz filter using multi-layer metamaterials&author=Liang L&author=Jin B&author=Wu J&publication_year=2013&journal=Appl Phys B&volume=113&issue=2&pages=285-290
[57]
Choi
M,
Lee
S H,
Kim
Y, et al.
A terahertz metamaterial with unnaturally high refractive index.
Nature,
2011, 470(7334): 369-373
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A terahertz metamaterial with unnaturally high refractive index&author=Choi M&author=Lee S H&author=Kim Y&publication_year=2011&journal=Nature&volume=470&issue=7334&pages=369-373
[58]
Fan
K,
Strikwerda
A C,
Tao
H, et al.
Stand-up magnetic metamaterials at terahertz frequencies.
Opt Express,
2011, 19(13): 12619-12627
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stand-up magnetic metamaterials at terahertz frequencies&author=Fan K&author=Strikwerda A C&author=Tao H&publication_year=2011&journal=Opt Express&volume=19&issue=13&pages=12619-12627
[59]
Li
G X,
Chen
S M,
Wong
W H, et al.
Highly flexible near-infrared metamaterials.
Opt Express,
2012, 20(1): 397-402
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Highly flexible near-infrared metamaterials&author=Li G X&author=Chen S M&author=Wong W H&publication_year=2012&journal=Opt Express&volume=20&issue=1&pages=397-402
[60]
Di Falco
A,
Ploschner
M,
Krauss
T F.
Flexible metamaterials at visible wavelengths.
New J Phys,
2010, 12(11): 113006
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Flexible metamaterials at visible wavelengths&author=Di Falco A&author=Ploschner M&author=Krauss T F&publication_year=2010&journal=New J Phys&volume=12&issue=11&pages=113006
[61]
Xu
X,
Peng
B,
Li
D, et al.
Flexible visible–infrared metamaterials and their applications in highly sensitive chemical and biological sensing.
Nano Lett,
2011, 11(8): 3232-3238
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Flexible visible–infrared metamaterials and their applications in highly sensitive chemical and biological sensing&author=Xu X&author=Peng B&author=Li D&publication_year=2011&journal=Nano Lett&volume=11&issue=8&pages=3232-3238
[62]
Muná Wong
L.
Transparent free-standing metamaterials and their applications in surface-enhanced Raman scattering.
Nanoscale,
2014, 6(1): 132-139
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Transparent free-standing metamaterials and their applications in surface-enhanced Raman scattering&author=Muná Wong L&publication_year=2014&journal=Nanoscale&volume=6&issue=1&pages=132-139
[63]
Chanda
D,
Shigeta
K,
Gupta
S, et al.
Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing.
Nat Nanotechnol,
2011, 6(7): 402-407
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing&author=Chanda D&author=Shigeta K&author=Gupta S&publication_year=2011&journal=Nat Nanotechnol&volume=6&issue=7&pages=402-407
[64]
Gao
L,
Kim
Y,
Vazquez-Guardado
A, et al.
Materials selections and growth conditions for large-Area, multilayered, visible negative index metamaterials formed by nanotransfer printing.
Adv Opt Mater,
2014, 2: 256-261
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Materials selections and growth conditions for large-Area, multilayered, visible negative index metamaterials formed by nanotransfer printing&author=Gao L&author=Kim Y&author=Vazquez-Guardado A&publication_year=2014&journal=Adv Opt Mater&volume=2&pages=256-261
[65]
Gao
L,
Shigeta
K,
Vazquez-Guardado
A, et al.
Nanoimprinting techniques for large-area three-dimensional negative index metamaterials with operation in the visible and telecom bands.
ACS Nano,
2014, 8(6): 5535-5542
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nanoimprinting techniques for large-area three-dimensional negative index metamaterials with operation in the visible and telecom bands&author=Gao L&author=Shigeta K&author=Vazquez-Guardado A&publication_year=2014&journal=ACS Nano&volume=8&issue=6&pages=5535-5542
[66]
Chiang
Y L,
Chen
C W,
Wang
C H, et al.
Mechanically tunable surface plasmon resonance based on gold nanoparticles and elastic membrane polydimethylsiloxane composite.
Appl Phys Lett,
2010, 96(4): 041904
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mechanically tunable surface plasmon resonance based on gold nanoparticles and elastic membrane polydimethylsiloxane composite&author=Chiang Y L&author=Chen C W&author=Wang C H&publication_year=2010&journal=Appl Phys Lett&volume=96&issue=4&pages=041904
[67]
Millyard
M G,
Huang
F M,
White
R, et al.
Stretch-induced plasmonic anisotropy of self-assembled gold nanoparticle mats.
Appl Phys Lett,
2012, 100(7): 073101
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stretch-induced plasmonic anisotropy of self-assembled gold nanoparticle mats&author=Millyard M G&author=Huang F M&author=White R&publication_year=2012&journal=Appl Phys Lett&volume=100&issue=7&pages=073101
[68]
Shiohara
A,
Langer
J,
Polavarapu
L, et al.
Solution processed polydimethylsiloxane/gold nanostar flexible substrates for plasmonic sensing.
Nanoscale,
2014, 6(16): 9817-9823
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Solution processed polydimethylsiloxane/gold nanostar flexible substrates for plasmonic sensing&author=Shiohara A&author=Langer J&author=Polavarapu L&publication_year=2014&journal=Nanoscale&volume=6&issue=16&pages=9817-9823
[69]
Hossain
M K,
Willmott
G R,
Etchegoin
P G, et al.
Tunable SERS using gold nanoaggregates on an elastomeric substrate.
Nanoscale,
2013, 5(19): 8945-8950
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tunable SERS using gold nanoaggregates on an elastomeric substrate&author=Hossain M K&author=Willmott G R&author=Etchegoin P G&publication_year=2013&journal=Nanoscale&volume=5&issue=19&pages=8945-8950
[70]
Rankin
A,
McGarry
S A.
Flexible pressure sensitive colour changing device using plasmonic nanoparticles.
Nanotechnology,
2015, 26(7): 075502
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Flexible pressure sensitive colour changing device using plasmonic nanoparticles&author=Rankin A&author=McGarry S A&publication_year=2015&journal=Nanotechnology&volume=26&issue=7&pages=075502
[71]
Kang
H,
Heo
C J,
Jeon
H C, et al.
Durable plasmonic cap arrays on flexible substrate with real-time optical tunability for high-fidelity SERS devices.
ACS Appl Mater Inf,
2013, 5(11): 4569-4574
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Durable plasmonic cap arrays on flexible substrate with real-time optical tunability for high-fidelity SERS devices&author=Kang H&author=Heo C J&author=Jeon H C&publication_year=2013&journal=ACS Appl Mater Inf&volume=5&issue=11&pages=4569-4574
[72]
Toma
M,
Loget
G,
Corn
R M.
Fabrication of broadband antireflective plasmonic gold nanocone arrays on flexible polymer films.
Nano Lett,
2013, 13(12): 6164-6169
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fabrication of broadband antireflective plasmonic gold nanocone arrays on flexible polymer films&author=Toma M&author=Loget G&author=Corn R M&publication_year=2013&journal=Nano Lett&volume=13&issue=12&pages=6164-6169
[73]
Kahraman
M,
Daggumati
P,
Kurtulus
O, et al.
Fabrication and characterization of flexible and tunable plasmonic nanostructures.
Sci Rep,
2013, 3: 3396
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fabrication and characterization of flexible and tunable plasmonic nanostructures&author=Kahraman M&author=Daggumati P&author=Kurtulus O&publication_year=2013&journal=Sci Rep&volume=3&pages=3396
[74]
Aksu
S,
Huang
M,
Artar
A, et al.
Flexible plasmonics on unconventional and nonplanar substrates.
Adv Mater,
2011, 23(38): 4422-4430
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Flexible plasmonics on unconventional and nonplanar substrates&author=Aksu S&author=Huang M&author=Artar A&publication_year=2011&journal=Adv Mater&volume=23&issue=38&pages=4422-4430
[75]
Vazquez-Mena
O,
Sannomiya
T,
Tosun
M, et al.
High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks.
ACS Nano,
2012, 6(6): 5474-5481
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks&author=Vazquez-Mena O&author=Sannomiya T&author=Tosun M&publication_year=2012&journal=ACS Nano&volume=6&issue=6&pages=5474-5481
[76]
Li
J,
Shah
C M,
Withayachumnankul
W, et al.
Mechanically tunable terahertz metamaterials.
Appl Phys Lett,
2013, 102(12): 121101
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mechanically tunable terahertz metamaterials&author=Li J&author=Shah C M&author=Withayachumnankul W&publication_year=2013&journal=Appl Phys Lett&volume=102&issue=12&pages=121101
[77]
Fan
K,
Zhao
X,
Zhang
J, et al.
Optically tunable terahertz metamaterials on highly flexible substrates.
IEEE Trans THz Sci Technol,
2013, 3(6): 702-708
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Optically tunable terahertz metamaterials on highly flexible substrates&author=Fan K&author=Zhao X&author=Zhang J&publication_year=2013&journal=IEEE Trans THz Sci Technol&volume=3&issue=6&pages=702-708
[78]
Lee
S,
Kim
S,
Kim
T T, et al.
Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts.
Adv Mater,
2012, 24(26): 3491-3497
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts&author=Lee S&author=Kim S&author=Kim T T&publication_year=2012&journal=Adv Mater&volume=24&issue=26&pages=3491-3497
[79]
Pryce
I M,
Aydin
K,
Kelaita
Y A, et al.
Highly strained compliant optical metamaterials with large frequency tunability.
Nano Lett,
2010, 10(10): 4222-4227
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Highly strained compliant optical metamaterials with large frequency tunability&author=Pryce I M&author=Aydin K&author=Kelaita Y A&publication_year=2010&journal=Nano Lett&volume=10&issue=10&pages=4222-4227
[80]
Kanamori
Y,
Hokari
R,
Hane
K.
MEMS for plasmon control of optical metamaterials.
IEEE J Sel Topics Quantum Electron,
2015, 21(4): 1-10
Google Scholar
http://scholar.google.com/scholar_lookup?title=MEMS for plasmon control of optical metamaterials&author=Kanamori Y&author=Hokari R&author=Hane K&publication_year=2015&journal=IEEE J Sel Topics Quantum Electron&volume=21&issue=4&pages=1-10
[81]
Zhang
X,
Zhang
J,
Liu
H, et al.
Soft plasmons with stretchable spectroscopic response based on thermally patterned gold nanoparticles.
Sci Rep,
2014, 4: 4182
Google Scholar
http://scholar.google.com/scholar_lookup?title=Soft plasmons with stretchable spectroscopic response based on thermally patterned gold nanoparticles&author=Zhang X&author=Zhang J&author=Liu H&publication_year=2014&journal=Sci Rep&volume=4&pages=4182
[82]
Huang
F,
Baumberg
J J.
Actively tuned plasmons on elastomerically driven Au nanoparticle dimers.
Nano Lett,
2010, 10(5): 1787-1792
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Actively tuned plasmons on elastomerically driven Au nanoparticle dimers&author=Huang F&author=Baumberg J J&publication_year=2010&journal=Nano Lett&volume=10&issue=5&pages=1787-1792
[83]
Alexander
K D,
Skinner
K,
Zhang
S, et al.
Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate.
Nano Lett,
2010, 10(11): 4488-4493
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate&author=Alexander K D&author=Skinner K&author=Zhang S&publication_year=2010&journal=Nano Lett&volume=10&issue=11&pages=4488-4493
[84]
Gao
L,
Zhang
Y,
Zhang
H, et al.
Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures.
ACS Nano,
2015, 9(6): 5968-5975
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures&author=Gao L&author=Zhang Y&author=Zhang H&publication_year=2015&journal=ACS Nano&volume=9&issue=6&pages=5968-5975
[85]
Shen
X,
Cui
T J,
Martin-Cano
D, et al.
Conformal surface plasmons propagating on ultrathin and flexible films.
Proc Natl Acad Sci USA,
2013, 110(1): 40-45
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Conformal surface plasmons propagating on ultrathin and flexible films&author=Shen X&author=Cui T J&author=Martin-Cano D&publication_year=2013&journal=Proc Natl Acad Sci USA&volume=110&issue=1&pages=40-45