Materials and applications of flexible metamaterials and plasmonics

logo

SCIENTIA SINICA Physica, Mechanica & Astronomica, Volume 46, Issue 4: 044604(2016) https://doi.org/10.1360/SSPMA2015-00544

Materials and applications of flexible metamaterials and plasmonics

More info
  • ReceivedNov 3, 2015
  • AcceptedDec 15, 2015
  • PublishedJan 11, 2016
PACS numbers

Abstract

Given the ability to bend, stretch and roll like stretchable electronics, the newly developed metamaterial and plasmonic devices would open new chapters in functional optics. They can manipulate the electromagnetic waves in unprecedented forms and realize powerful applications like invisibility cloaking, sub-wavelength imaging, transformation optics and functional sensors etc. This review focused on the recent development in soft, flexible metamaterials and plasmonics that resonate from microwave to visible frequencies, various applications have been realized in filters, sensors and surface enhanced Raman spectroscopy etc. Optical structure designs are ranged from split ring resonators, multilayer fishnet metamaterials and nanoparticle arrays. Common soft substrates include polyimide, polydimethysiloxane, polyethylene terephthalate and polyethylene naphthalene. Their mechanical and optical properties were discussed. Compatible fabrication techniques such as conventional photolithography, electron beam lithography and a few newly developed nanofabrication techniques were introduced. Among which, nanoimprint and nanotransfer techniques that result in large area, low cost, high quality soft metamaterials and plasmonics are promising in wearable and tunable applications.


Funded by

国家重点基础研究发展计划(2015CB351903)

江苏省自然科学基金资助项目(BK20150790)


References

[1] Kim D H, Lu N, Ghaffari R, et al. Inorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics. NPG Asia Mater, 2012, 4(4): e15 CrossRef Google Scholar

[2] Kim D H, Lu N, Huang Y, et al. Materials for stretchable electronics in bioinspired and biointegrated devices. MRS Bull, 2012, 37: 226-235 CrossRef Google Scholar

[3] Rogers J A, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science, 2010, 327(5973): 1603-1607 CrossRef Google Scholar

[4] Kim D H, Lu N, Ma R, et al. Epidermal electronics. Science, 2011, 333(6044): 838-843 CrossRef Google Scholar

[5] Webb R C, Bonifas A P, Behnaz A, et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat Mater, 2013, 12(10): 938-944 CrossRef Google Scholar

[6] Kim D H, Viventi J, Amsden J J, et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater, 2010, 9(6): 511-517 CrossRef Google Scholar

[7] Kim D H, Ghaffari R, Lu N, et al. Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy. Proc Natl Acad Sci USA, 2012, 109(49): 19910-19915 CrossRef Google Scholar

[8] Jung I, Xiao J, Malyarchuk V, et al. Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability. Proc Natl Acad Sci USA, 2011, 108(5): 1788-1793 CrossRef Google Scholar

[9] Ko H C, Stoykovich M P, Song J, et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature, 2008, 454(7205): 748-753 CrossRef Google Scholar

[10] Song Y M, Xie Y, Malyarchuk V, et al. Digital cameras with designs inspired by the arthropod eye. Nature, 2013, 497(7447): 95-99 CrossRef Google Scholar

[11] Yoon J, Baca A J, Park S I, et al. Ultrathin silicon solar microcells for semitransparent, mechanically flexible andmicroconcentrator moduledesigns. Nat Mater, 2008, 7(11): 907-915 CrossRef Google Scholar

[12] Lee J, Wu J, Shi M, et al. Stretchable GaAs photovoltaics with designs that enable high areal coverage. Adv Mater, 2011, 23(8): 986-991 CrossRef Google Scholar

[13] Yu K J, Gao L, Park J S, et al. Light trapping in ultrathin monocrystalline silicon solar cells. Adv Ener Mater, 2013, 3: 1401-1406 CrossRef Google Scholar

[14] Kim R H, Kim D H, Xiao J, et al. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat Mater, 2010, 9(11): 929-937 CrossRef Google Scholar

[15] Kim H S, Brueckner E, Song J, et al. Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting. Proc Natl Acad Sci USA, 2011, 108(25): 10072-10077 CrossRef Google Scholar

[16] Xu S, Zhang Y, Cho J, et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat Commun, 2013, 4: 1503 CrossRef Google Scholar

[17] Veselago V G. The electrodynamics of substances with simultaneously negative values of e and m. Sov Phys Usp, 1968, 10(4): 509-514 CrossRef Google Scholar

[18] Pendry J B. Negative refraction makes a perfect lens. Phys Rev Lett, 2000, 85(18): 3966-3969 CrossRef Google Scholar

[19] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001, 292(5514): 77-79 CrossRef Google Scholar

[20] Valentine J, Zhang S, Zentgraf T, et al. Three-dimensional optical metamaterial with a negative refractive index. Nature, 2008, 455(7211): 376-380 CrossRef Google Scholar

[21] Shalaev V M. Optical negative-index metamaterials. Nat Photon, 2007, 1(1): 41-48 CrossRef Google Scholar

[22] Soukoulis C M, Linden S, Wegener M. Negative refractive index at optical wavelengths. Science, 2007, 315(5808): 47-49 CrossRef Google Scholar

[23] Zheludev N I. The road ahead for metamaterials. Science, 2010, 328(5978): 582-583 CrossRef Google Scholar

[24] Soukoulis C M, Wegener M. Optical metamaterials: More bulky and less lossy. Science, 2010, 330(6011): 1633-1634 CrossRef Google Scholar

[25] Boltasseva A, Atwater H A. Low-loss plasmonic metamaterials. Science, 2011, 331: 290-291 CrossRef Google Scholar

[26] Luk’yanchuk B, Zheludev N I, Maier S A, et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater, 2010, 9(9): 707-715 CrossRef Google Scholar

[27] Fan J A, Wu C, Bao K, et al. Self-assembled plasmonic nanoparticle clusters. Science, 2010, 328(5982): 1135-1138 CrossRef Google Scholar

[28] Anker J N, Hall W P, Lyandres O, et al. Biosensing with plasmonic nanosensors. Nat Mater, 2008, 7(6): 442-453 CrossRef Google Scholar

[29] Stewart M E, Anderton C R, Thompson L B, et al. Nanostructured plasmonic sensors. Chem Rev, 2008, 108(2): 494-521 CrossRef Google Scholar

[30] Kabashin A V, Evans P, Pastkovsky S. Plasmonic nanorod metamaterials for biosensing. Nat Mater, 2009, 8(11): 867-871 CrossRef Google Scholar

[31] Liu N, Mesch M, Weiss T, et al. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett, 2010, 10(7): 2342-2348 CrossRef Google Scholar

[32] Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 1997, 275(5303): 1102-1106 CrossRef Google Scholar

[33] Haes A J, Haynes C L, McFarland A D, et al. Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS Bull, 2005, 30(05): 368-375 CrossRef Google Scholar

[34] Le Ru E, Etchegoin P. Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects. Oxford: Elsevier. 2008, Google Scholar

[35] Kawata S, Inouye Y, Verma P. Plasmonics for near-field nano-imaging and superlensing. Nat Photon, 2009, 3(7): 388-394 CrossRef Google Scholar

[36] Schuller J A, Barnard E S, Cai W, et al. Plasmonics for extreme light concentration and manipulation. Nat Mater, 2010, 9(3): 193-204 CrossRef Google Scholar

[37] Catchpole K R, Polman A. Plasmonic solar cells. Opt Express, 2008, 16(26): 21793-21800 CrossRef Google Scholar

[38] Yen T J, Padilla W J, Fang N, et al. Terahertz magnetic response from artificial materials. Science, 2004, 303(5663): 1494-1496 CrossRef Google Scholar

[39] Paul O, Imhof C, Reinhard B, et al. Negative index bulk metamaterial at terahertz frequencies. Opt Express, 2008, 16(9): 6736-6744 CrossRef Google Scholar

[40] Liu N, Guo H, Fu L, et al. Three-dimensional photonic metamaterials at optical frequencies. Nat Mater, 2008, 7(1): 31-37 CrossRef Google Scholar

[41] Valentine J, Zhang S, Zentgraf T, et al. Three-dimensional optical metamaterial with a negative refractive index. Nature, 2008, 455(7211): 376-380 CrossRef Google Scholar

[42] Garcia-Meca C, Ortuno R, Rodriguez-Fortuno F J. Double-negative polarization-independent fishnet metamaterials in the visible spectrum. Opt Lett, 2009, 34(10): 1603-1605 CrossRef Google Scholar

[43] Xiao S M, Chettiar U K, Kildishev A V, et al. Yellow-light negative-index metamaterials. Opt Lett, 2009, 34(22): 3478-3480 CrossRef Google Scholar

[44] Garcia-Meca C, Hurtado J, Martí J, et al. Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths. Phys Rev Lett, 2011, 106(6): 067402 CrossRef Google Scholar

[45] L?tters J C, Olthuis W, Veltink P H, et al. The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J Micromech Microeng, 1997, 7(3): 145 CrossRef Google Scholar

[46] Khodasevych I E, Shah C M, Sriram S, et al. Elastomeric silicone substrates for terahertz fishnet metamaterials. Appl Phys Lett, 2012, 100(6): 061101 CrossRef Google Scholar

[47] MacDonald W A. Engineered films for display technologies. J Mater Chem, 2004, 14(1): 4-10 CrossRef Google Scholar

[48] Lu N, Wang X, Suo Z, et al. Metal films on polymer substrates stretched beyond 50%. Appl Phys Lett, 2007, 91(22): 221909 CrossRef Google Scholar

[49] Choi M C, Kim Y, Ha C S. Polymers for flexible displays: From material selection to device applications. Prog Polym Sci, 2008, 33(6): 581-630 CrossRef Google Scholar

[50] Melik R, Unal E, Perkgoz N K, et al. Flexible metamaterials for wireless strain sensing. Appl Phys Lett, 2009, 95(18): 181105 CrossRef Google Scholar

[51] Lapine M, Powell D, Gorkunov M, et al. Structural tunability in metamaterials. Appl Phys Lett, 2009, 95(8): 084105 CrossRef Google Scholar

[52] Tao H, Strikwerda A C, Fan K, et al. Terahertz metamaterials on free-standing highly-flexible polyimide substrates. J Phys D-Appl Phys, 2008, 41: 232004 CrossRef Google Scholar

[53] Woo J M, Kim D, Hussain S, et al. Low-loss flexible bilayer metamaterials in THz regime. Opt Express, 2014, 22(3): 2289-2298 CrossRef Google Scholar

[54] Chen Z C, Han N R, Pan Z Y, et al. Tunable resonance enhancement of multi-layer terahertz metamaterials fabricated by parallel laser micro-lens array lithography on flexible substrates. Opt Mater Express, 2011, 1(2): 151-157 CrossRef Google Scholar

[55] Han N R, Chen Z C, Lim C S, et al. Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates. Opt Express, 2011, 19(8): 6990-6998 CrossRef Google Scholar

[56] Liang L, Jin B, Wu J, et al. A flexible wideband bandpass terahertz filter using multi-layer metamaterials. Appl Phys B, 2013, 113(2): 285-290 Google Scholar

[57] Choi M, Lee S H, Kim Y, et al. A terahertz metamaterial with unnaturally high refractive index. Nature, 2011, 470(7334): 369-373 CrossRef Google Scholar

[58] Fan K, Strikwerda A C, Tao H, et al. Stand-up magnetic metamaterials at terahertz frequencies. Opt Express, 2011, 19(13): 12619-12627 CrossRef Google Scholar

[59] Li G X, Chen S M, Wong W H, et al. Highly flexible near-infrared metamaterials. Opt Express, 2012, 20(1): 397-402 CrossRef Google Scholar

[60] Di Falco A, Ploschner M, Krauss T F. Flexible metamaterials at visible wavelengths. New J Phys, 2010, 12(11): 113006 CrossRef Google Scholar

[61] Xu X, Peng B, Li D, et al. Flexible visible–infrared metamaterials and their applications in highly sensitive chemical and biological sensing. Nano Lett, 2011, 11(8): 3232-3238 CrossRef Google Scholar

[62] Muná Wong L. Transparent free-standing metamaterials and their applications in surface-enhanced Raman scattering. Nanoscale, 2014, 6(1): 132-139 CrossRef Google Scholar

[63] Chanda D, Shigeta K, Gupta S, et al. Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing. Nat Nanotechnol, 2011, 6(7): 402-407 CrossRef Google Scholar

[64] Gao L, Kim Y, Vazquez-Guardado A, et al. Materials selections and growth conditions for large-Area, multilayered, visible negative index metamaterials formed by nanotransfer printing. Adv Opt Mater, 2014, 2: 256-261 CrossRef Google Scholar

[65] Gao L, Shigeta K, Vazquez-Guardado A, et al. Nanoimprinting techniques for large-area three-dimensional negative index metamaterials with operation in the visible and telecom bands. ACS Nano, 2014, 8(6): 5535-5542 CrossRef Google Scholar

[66] Chiang Y L, Chen C W, Wang C H, et al. Mechanically tunable surface plasmon resonance based on gold nanoparticles and elastic membrane polydimethylsiloxane composite. Appl Phys Lett, 2010, 96(4): 041904 CrossRef Google Scholar

[67] Millyard M G, Huang F M, White R, et al. Stretch-induced plasmonic anisotropy of self-assembled gold nanoparticle mats. Appl Phys Lett, 2012, 100(7): 073101 CrossRef Google Scholar

[68] Shiohara A, Langer J, Polavarapu L, et al. Solution processed polydimethylsiloxane/gold nanostar flexible substrates for plasmonic sensing. Nanoscale, 2014, 6(16): 9817-9823 CrossRef Google Scholar

[69] Hossain M K, Willmott G R, Etchegoin P G, et al. Tunable SERS using gold nanoaggregates on an elastomeric substrate. Nanoscale, 2013, 5(19): 8945-8950 CrossRef Google Scholar

[70] Rankin A, McGarry S A. Flexible pressure sensitive colour changing device using plasmonic nanoparticles. Nanotechnology, 2015, 26(7): 075502 CrossRef Google Scholar

[71] Kang H, Heo C J, Jeon H C, et al. Durable plasmonic cap arrays on flexible substrate with real-time optical tunability for high-fidelity SERS devices. ACS Appl Mater Inf, 2013, 5(11): 4569-4574 CrossRef Google Scholar

[72] Toma M, Loget G, Corn R M. Fabrication of broadband antireflective plasmonic gold nanocone arrays on flexible polymer films. Nano Lett, 2013, 13(12): 6164-6169 CrossRef Google Scholar

[73] Kahraman M, Daggumati P, Kurtulus O, et al. Fabrication and characterization of flexible and tunable plasmonic nanostructures. Sci Rep, 2013, 3: 3396 Google Scholar

[74] Aksu S, Huang M, Artar A, et al. Flexible plasmonics on unconventional and nonplanar substrates. Adv Mater, 2011, 23(38): 4422-4430 CrossRef Google Scholar

[75] Vazquez-Mena O, Sannomiya T, Tosun M, et al. High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks. ACS Nano, 2012, 6(6): 5474-5481 CrossRef Google Scholar

[76] Li J, Shah C M, Withayachumnankul W, et al. Mechanically tunable terahertz metamaterials. Appl Phys Lett, 2013, 102(12): 121101 CrossRef Google Scholar

[77] Fan K, Zhao X, Zhang J, et al. Optically tunable terahertz metamaterials on highly flexible substrates. IEEE Trans THz Sci Technol, 2013, 3(6): 702-708 CrossRef Google Scholar

[78] Lee S, Kim S, Kim T T, et al. Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts. Adv Mater, 2012, 24(26): 3491-3497 CrossRef Google Scholar

[79] Pryce I M, Aydin K, Kelaita Y A, et al. Highly strained compliant optical metamaterials with large frequency tunability. Nano Lett, 2010, 10(10): 4222-4227 CrossRef Google Scholar

[80] Kanamori Y, Hokari R, Hane K. MEMS for plasmon control of optical metamaterials. IEEE J Sel Topics Quantum Electron, 2015, 21(4): 1-10 Google Scholar

[81] Zhang X, Zhang J, Liu H, et al. Soft plasmons with stretchable spectroscopic response based on thermally patterned gold nanoparticles. Sci Rep, 2014, 4: 4182 Google Scholar

[82] Huang F, Baumberg J J. Actively tuned plasmons on elastomerically driven Au nanoparticle dimers. Nano Lett, 2010, 10(5): 1787-1792 CrossRef Google Scholar

[83] Alexander K D, Skinner K, Zhang S, et al. Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate. Nano Lett, 2010, 10(11): 4488-4493 CrossRef Google Scholar

[84] Gao L, Zhang Y, Zhang H, et al. Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures. ACS Nano, 2015, 9(6): 5968-5975 CrossRef Google Scholar

[85] Shen X, Cui T J, Martin-Cano D, et al. Conformal surface plasmons propagating on ultrathin and flexible films. Proc Natl Acad Sci USA, 2013, 110(1): 40-45 CrossRef Google Scholar

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1