Flexible and stretchable electronics attract much more attention in recent years due to their excellent conformability to non-planar environment and potential applications in wearable electronics, flexible display and bioengineering. In this work, we report the use of printing strategy applied to the fabrication of flexible and stretchable circuit. The prepared Ag NWs paste was printed on glass substrate to form conductive circuit via screen printing, and liquid PDMS was casted on top of the printed Ag NWs circuit and cured to peel off the substrate. The randomly oriented Ag NWs were buried in PDMS to form conductive and stretchable circuit. We studied the influence of the diameter of Ag NWs on the surface morphology of Ag NWs/PDMS circuit during strain process and further analyzed the relationship between the surface micro-structure and electrical property of Ag NWs/PDMS conductor. The results showed that the cracks happened on the surface of circuit with Ag NWs of smaller diameter in stretching process, while the buckling structure appeared after pre-tension strain of 100% with Ag NWs of larger diameter. The buckling of Ag NWs/PDMS layer resulted in the stable resistance of stretchable circuit in the strain range of 0–50%. We also demonstrated the printed stretchable circuit integrated with LED array under bending, twisting and even stretching deformation. The printing method may provide a new step towards the development of stretchable strategies for conductive circuit and other wearable electronics.
国家重点基础研究发展计划资助项目(2015CB351900)
[1] Someya T. Stretchable Electronics. Weinheim: Wiley-VCH. 2013, Google Scholar
[2] Suo Z. Mechanics of stretchable electronics and soft machines. MRS Bull, 2012, 37: 218-225 CrossRef Google Scholar
[3] Kim D H, Kim Y S, Liu Z, et al. Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper. Adv Mater, 2009, 21: 3703-3707 CrossRef Google Scholar
[4] Reuss R H, Chalamala B R, Moussessian A, et al. Macroelectronics: Perspectives on technology and applications. Proc IEEE, 2005, 93: 1239-1256 CrossRef Google Scholar
[5] Crone B, Dodabalapur A, Lin Y Y, et al. Large-scale complementary integrated circuits based on organic transistors. Nature, 2000, 403: 521-523 CrossRef Google Scholar
[6] Forrest S R. The path to ubiquitous and low-coat organic electronic appliances on plastic. Nature, 2004, 428: 911-918 CrossRef Google Scholar
[7] Tang C W, VanSlyke S A. Organic electroluminescent diodes. Appl Phys Lett, 1987, 51: 913-915 CrossRef Google Scholar
[8] McAlpine M C, Ahmad H, Wang D, et al. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat Mater, 2007, 6: 379-384 CrossRef Google Scholar
[9] Baca A J, Ahn J H, Sun Y G, et al. Semiconductor wires and ribbons for high-performance flexible electronics. Angew Chem Int Ed, 2008, 47: 5524-5542 CrossRef Google Scholar
[10] Kim D H, Xiao J, Song J, et al. Stretchable, curvilinear electronics based on inorganic material. Adv Mater, 2010, 22: 2108-2124 CrossRef Google Scholar
[11] Kim D H, Viventi J, Amsden J J, et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater, 2010, 9: 511-517 CrossRef Google Scholar
[12] Kim D H, Lu N, Ma R, et al. Epidermal electronics. Science, 2011, 333: 838-843 CrossRef Google Scholar
[13] Gao L, Zhang Y, Malyarchuk V, et al. Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin. Nat Commun, 2014, 5: 4938 CrossRef Google Scholar
[14] Xu S, Zhang Y, Cho J, et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat Commun, 2013, 4: 1543 CrossRef Google Scholar
[15] Jang K I, Han S Y, Xu S, et al. Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring. Nat Commun, 2014, 5: 4779 CrossRef Google Scholar
[16] Kim R H, Kim D H, Xiao J, et al. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat Mater, 2010, 9: 929-937 CrossRef Google Scholar
[17] Xu S, Yan Z, Jang K I, et al. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science, 2015, 347: 154-159 CrossRef Google Scholar
[18] 崔 铮. 中国印刷电子产业现状与前景展望. 印刷电路信息, 2013, 12: 4-7 Google Scholar
[19] 张 霞昌. 纸电池和印刷电子. 中国材料进展, 2014, 33(3): 186-188 Google Scholar
[20] Zhao J, Gao Y, Gu W, et al. Fabrication and electrical properties of all-printed carbon nanotube thin film transistors on flexible substrates. J Mater Chem, 2012, 22: 20747-20753 CrossRef Google Scholar
[21]
Zhuang J, Li W, Su W, et al. Novel ternary bipolar host material with carbazole, triazole and phosphine oxide moieties for high efficiency sky-blue OLEDs. New J Chem
[22] Xu W, Zhao J, Qian L, et al. Sorting of large-diameter semiconducting carbon nanotube and printed flexible driving circuit for organic light emitting diode (OLED). Nanoscale, 2014, 6: 1589-1595 CrossRef Google Scholar
[23] Wang C, Qian L, Xu W, et al. High performance thin film transistors based on regioregular poly(3-dodecylthiophene)-sorted large diameter semiconducting single-walled carbon nanotubes. Nanoscale, 2013, 5: 4156-4161 CrossRef Google Scholar
[24] Boley J W, White E L, Kramer R K. Mechanically sintered gallium-indium nanoparticles. Adv Mater, 2015, 27: 2355-2360 CrossRef Google Scholar
[25] Zhu S, So J H, Mays R, et al. Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core. Adv Funct Mater, 2013, 23: 2308-2314 CrossRef Google Scholar
[26] Matsuzaki R, Tabayashi K. Highly stretchable, global, and distributed local strain sensing line using GaInSn electrodes for wearable electronics. Adv Funct Mater, 2015, 25: 3806-3813 CrossRef Google Scholar
[27] Bandodkar A J, Nu?ez-Flores R, Jia W, et al. All-printed stretchable electrochemical devices. Adv Mater, 2015, 27: 3060-3065 CrossRef Google Scholar
[28] Larmagnac A, Eggenberger S, Janossy H, et al. Stretchable electronics based on Ag-PDMS composites. Sci Rep, 2014, 4: 7254 CrossRef Google Scholar
[29] Matsuhisa N, Kaltenbrunner M, Yokota T, et al. Printable elastic conductors with a high conductivity for electronic textile applications. Nat Commun, 2015, 6: 7461 CrossRef Google Scholar
[30] Xu F, Zhu Y. Highly conductive and stretchable silver nanowire conductors. Adv Mater, 2012, 24: 5117-5122 CrossRef Google Scholar
[31] Amjadi M, Pichitpajongkit A, Lee S, et al. Highly stretchable and sensitive strain sensor based on silver nanowire elastomer nanocomposite. ACS Nano, 2014, 8: 5154-5163 CrossRef Google Scholar
[32] Yao S, Zhu Y. Nanomaterial-enabled stretchable conductors: Strategies, materials and devices. Adv Mater, 2015, 27: 1480-1511 CrossRef Google Scholar
[33] 崔 铮. 印刷电子学: 材料技术及其应用. 北京: 高等教育出版社. 2012, Google Scholar
[34] Yunker P J, Still T, Lohr M A, et al. Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature, 2011, 476: 308-311 CrossRef Google Scholar
[35] Choi S, Stassi S, Pisano A P, et al. Coffee-ring effect-based three dimensional patterning of micro/nanoparticle assembly with a single droplet. Langmuir, 2010, 26: 11690-11698 CrossRef Google Scholar
[36] Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotech, 2011, 6: 296-301 CrossRef Google Scholar
图1
(网络版彩图)Ag NWs/PDMS柔性可延展电路的制备流程示意图
图2
30 nm直径(a)和90 nm直径(b)的Ag NWs扫描电子显微镜(SEM)照片; (c) 配制得到的Ag NWs浆料, 尺寸为 90 nm
图3
(网络版彩图)(a)印刷制备Ag NWs/PDMS柔性可拉伸电极照片及180°弯曲(b)和720°扭曲(c)照片; (d) Ag NWs/PDMS柔性电极表面SEM照片; (e) 截面SEM照片; (f) 局部放大SEM照片. 所有图片中Ag NWs尺寸为90 nm
图4
(网络版彩图)(a) 30 nm尺寸Ag NWs制备得到弹性导体首次100%拉伸回复后表面光学显微镜照片, 其中插图为样品50%拉伸时数码照片; (b) 表面放大光学照片; (c) 90 nm尺寸Ag NWs制备得到弹性导体100%拉伸回复后表面光学显微照片, 其中插图为样品50%拉伸时数码照片; (d) 表面高倍SEM照片
图5
不同尺寸Ag NWs印刷构成的导电网络结构浇筑PDMS前后表面形貌SEM照片. (a), (c) 30 nm; (b), (d) 90 nm; (a)和(b)为浇筑前; (c)和(d)为浇筑后; (c)和(d)的内部插图为局部放大SEM照片
图6
(网络版彩图)(a) 90 nm Ag NWs/PDMS弹性体初始拉伸回复过程示意图; (b) 初始100%拉伸回复后褶皱状表面三维结构照片; (c) 初始100%拉伸回复电阻变化曲线; (d) 初始100%拉伸回复后, 50%拉伸范围内电阻变化曲线, 插图为不同拉伸幅度电阻测试照片; (e) 印刷制备弹性导线(5 cm× 0.3 cm)不同拉伸幅度下串联LED发光照片
图7
(网络版彩图)(a) 印刷制备不同线宽可延展导线; (b) 印刷制备尺寸10 cm×10 cm可拉伸LED阵列电路; (c) LED柔性电路弯曲及扭曲照片; (d) LED柔性电路30%拉伸照片
Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有
京ICP备18024590号-1