Theory and optimization of the power super junction device

logo

SCIENTIA SINICA Physica, Mechanica & Astronomica, Volume 46, Issue 10: 107302(2016) https://doi.org/10.1360/SSPMA2016-00131

Theory and optimization of the power super junction device

More info
  • ReceivedMar 2, 2016
  • AcceptedMar 21, 2016
  • PublishedJul 15, 2016
PACS numbers

Abstract

Based on the optimization idea of the electric field from the surface to the bulk, this paper summarizes the basic theory and the two types of analytical optimization methods of the super junction (SJ) device. The essential difference between the SJ and the conventional power MOS structure is: the former is the junction-type voltage sustaining layer with the periodic N/P dopings and the later is the resistance-type voltage sustaining layer with the single conductive type. The positive and negative charges satisfying the charge balance are introduced into the SJ voltage sustaining layer, which causes the two-dimensional electric field to realize the optimization from the surface to the bulk. The paper gives the concepts of the charge and potential electric fields, analyzes the non-full depletion and full depletion modes, introduces the mechanism of the transient process and forward biased safe operating area, discusses the equivalent substrate model and the optimized substrate conditions. Finally, the minimum specific on-resistance Ron,min optimization methodology is proposed to give the Ron,min for a given breakdown voltage VB. Ron of the SJ is decreased significantly compared to that of the conventional power MOS with the same VB. The Ron-VB relationship changes from the RonVB2.5 to VB1.32 even VB1.03, leading to the SJ as the “milestone in high voltage power MOS device”


References

[1] 星 弼. 功率MOSFET与高压集成电路. 南京: 东南大学出版社. 1990, Google Scholar

[2] Baliga B J. Power Semiconductor Devices. Boston: PWS Publishing Company. 1996, Google Scholar

[3] Appels J, Vaes H, Verhoeven J. High voltage thin layer devices (RESURF devices). In: Electron Devices Meeting. Washington D C: IEEE Press. 1979, 25: 238-241 Google Scholar

[4] Appels J, Collet M, Hart P, et al. Thin layerhigh voltage devices (RESURF devices). Philips J Res, 1980, 35: 1-13 Google Scholar

[5] Zhang B, Li Z J, Hu S D, et al. Field enhancement for dielectric layer of high-voltage devices on silicon on insulator. IEEE Trans Electron Dev, 2009, 56: 2327-2334 CrossRef Google Scholar

[6] 波 , 段 宝兴, 李 肇基. 具有n+浮空层的体电场降低LDMOS结构耐压分析. 半导体学报, 2006, 27: 730-734 Google Scholar

[7] Qiao M, Hu X, Wen H J, et al. A novel substrate-assisted RESURF technology for small curvature radius junction. In: IEEE International Symposium on Power Semiconductor Devices and ICs. San Diego: IEEE Press. 2011, : 16-19 Google Scholar

[8] Iqbal M M H, Udrea F, Napoli E. On the static performance of the RESURF LDMOSFETs for power ICs. In: IEEE International Symposium on Power Semiconductor Devices and ICs. Barcelona: IEEE Press. 2009, : 247-250 Google Scholar

[9] Chen X B. Semiconductor power devices with alternating conductivity type high voltage breakdown region. US Patent, 5216275, 1993-06-01. Google Scholar

[10] 星 弼. 超结器件. 电力电子技术, 2008, 42: 2-7 Google Scholar

[11] Chen X B, Sin J K O. Optimization of the specific on-resistance of the COOLMOSTM. IEEE Trans Electron Dev, 2001, 48: 344-348 Google Scholar

[12] Coe D J. High voltage semiconductor device. US Patent, 4754310, 1988-06-28. Google Scholar

[13] Tihanyi J. Power MOSFET. US Patent, 5438215, 1995-08-01. Google Scholar

[14] Fujihira T. Theory of semiconductor superjunction devices. Jpn J Appl Phys, 1997, 36: 6254-6262 CrossRef Google Scholar

[15] Lorenz L, Deboy G, Knapp A, et al. COOLMOSTM-a new milestone in high voltage power MOS. In: IEEE International Symposium on Power Semiconductor Devices and ICs. Tornoto: IEEE Press. 1999, : 3-10 Google Scholar

[16] Deboy G, Marz M, Stengl J P, et al. A new generation of high voltage MOSFETs breaks the limit line of silicon. In: IEDM Technical Digest. San Francisco: IEEE Press. 1998, : 683-685 Google Scholar

[17] Fujihira T, Miyasaka Y. Simulated superior performances of semiconductor superjunction devices. In: IEEE International Symposium on Power Semiconductor Devices and ICs. Kyoto: IEEE Press. 1998, : 423-426 Google Scholar

[18] Shenoy P M, Bhalla A, Dolny G M. Analysis of the effect of charge imbalance on the static and dynamic characteristics of the super junction MOSFET. In: IEEE International Symposium on Power Semiconductor Devices and ICs. Canada: IEEE Press. 1999, : 99-102 Google Scholar

[19] Chen X B, Mawby P A, Board K, et al. Theory of a novel voltage-sustaining layer for power devices. Microelectron J, 1998, 29: 1005-1011 CrossRef Google Scholar

[20] Chen X B, Yang H Q, Cheng M. New “silicon limit” of power devices. Solid State Electron, 2002, 46: 1185-1192 CrossRef Google Scholar

[21] Strollo A G M, Napoli E. Optimal ON-resistance versus breakdown voltage tradeoff in superjunction power devices: A novel analytical model. IEEE Trans Electron Dev, 2001, 48: 2161-2167 CrossRef Google Scholar

[22] Huang H M, Chen X B. Optimization of specific on-resistance of balanced symmetric superjunction MOSFETs based on a better approximation of ionization integral. IEEE Trans Electron Dev, 2012, 59: 2742-2747 Google Scholar

[23] Zhang W T, Zhang B, Li Z H, et al. Theory of superjunction with NFD and FD modes based on normalized breakdown voltage. IEEE Trans Electron Dev, 2015, 62: 4114-4120 CrossRef Google Scholar

[24] Fulop W. Calculation of avalanche breakdown voltages of silicon p-n junctions. Solid State Electron, 1967, 10: 39-43 CrossRef Google Scholar

[25] Overstraeten R V, Man H D. Measurement of the ionization rates in diffused silicon p-n junctions. Solid State Electron, 1970, 13: 583-608 CrossRef Google Scholar

[26] Disney D, Dolny G. JFET depletion in superjunction devices. In: IEEE International Symposium on Power Semiconductor Devices and ICs. Orlando: IEEE Press. 2008, : 157-160 Google Scholar

[27] Caughey D, Thomas R. Carrier mobilities in silicon empirically related to doping and field. IEEE, 1967, 55: 2192-2193 CrossRef Google Scholar

[28] 健 , 乔 明, 李 肇基. 电荷非平衡super junction结构电场分布. 物理学报, 2006, 55: 3656-3663 Google Scholar

[29] Napoli E, Wang H, Udrea F. The effect of charge imbalance on superjunction power devices: An exact analytical solution. IEEE Electron Dev Lett, 2008, 29: 249-251 CrossRef Google Scholar

[30] Wang H, Napoli E, Udrea F. Breakdown voltage for superjunction power devices with charge imbalance: An analytical model valid for both punch through and non punch through devices. IEEE Trans Electron Dev, 2009, 56: 3175-3183 CrossRef Google Scholar

[31] Chen X B. Theory of the switching response of CBMOST. Chin J Electron, 2001, 10: 1-6 Google Scholar

[32] Zhang B, Xu Z X, Huang A Q. Analysis of the forward biased safe operating area of the super junction MOSFET. In: IEEE International Symposium on Power Semiconductor Devices and ICs. Toulouse: IEEE Press. 2000, : 61-64 Google Scholar

[33] Zhang B, Xu Z X, Huang A Q. Forward and Reverse Biased Safe Operating Areas of the COOLMOSTM. PESC, Galway, 2000, 81–86. Google Scholar

[34] Infineon Technologies AG. Siemens preliminary data sheet. SPP20N60S5 ISPB20N60S5, 1999. Google Scholar

[35] Nassif-Khalil S G, Salama C A T. Super junction LDMOST in silicon-on-sapphire technology (SJ-LDMOST). In: IEEE International Symposium on Power Semiconductor Devices and ICs. Sante Fe: IEEE Press. 2002, : 81-84 Google Scholar

[36] Zhang B, Zhang W T, Li Z H, et al. Equivalent substrate model for lateral super junction device. IEEE Trans Electron Dev, 2014, 6: 525-532 Google Scholar

[37] Honarkhah S, Nassif-Khalil S, Salama C A T. Back-etched super-junction LDMOST on SOI. In: Proceedings of Solid-State Device Research conference. IEEE, 2004. 117-120. Google Scholar

[38] Nassif-Khalil S G, Salama C A T. Super-junction LDMOST on a silicon-on-sapphire substrate. IEEE Trans Electron Dev, 2003, 50: 1385-1391 CrossRef Google Scholar

[39] Lin M J, Lee T H, Chang F L, et al. Lateral superjunction reduced surface field structure for the optimization of breakdown and conduction characteristics in a high-voltage lateral double diffused metal oxide field effect transistor. Jpn J Appl Phys, 2003, 42: 7227-7231 CrossRef Google Scholar

[40] Duan B X, Cao Z, Yuan X N, et al. New superjunction LDMOS breaking silicon limit by electric field modulation of buffered step doping. IEEE Dev Lett, 2015, 36: 47-49 CrossRef Google Scholar

[41] Duan B X, Cao Z, Yuan S, et al. Complete 3D-reduced surface field superjunction lateral double-diffused MOSFET breaking silicon limit. IEEE Electron Dev Lett, 2015, 36: 1348-1350 CrossRef Google Scholar

[42] Duan B X, Yang Y T, Zhang B. New superjunction LDMOS with-type charges’ compensation layer. IEEE Electron Dev Lett, 2009, 30: 305-307 CrossRef Google Scholar

[43] Zhang B, Wang W L, Chen W J, et al. High-voltage LDMOS with charge-balanced surface low on-resistance path layer. IEEE Electron Dev Lett, 2009, 30: 849-851 CrossRef Google Scholar

[44] Wu L J, Zhang W T, Qiao M, et al. SOI SJ high voltage device with linear variable doping interface thin silicon layer. Electron Lett, 2012, 48: 297-289 Google Scholar

[45] Chen W J, Zhang B, Li Z J. Realizing high voltage SJ-LDMOS with non-uniform N-buried layer. Solid State Electron, 2008, 52: 675-678 CrossRef Google Scholar

[46] Nassif-Khalil S G, Hou L Z, Salama C A T. SJ/RESURF LDMOST. IEEE Trans Electron Dev, 2004, 51: 1185-1191 CrossRef Google Scholar

[47] Kiefer J. Sequential minimax search for a maximum. Proc Am Math Soc, 1953, 4: 502-506 CrossRef Google Scholar

[48] Saito W, Omura I, Aida S, et al. Over 1000V semi-superjunction MOSFET with ultra-low on-resistance below the Si-limit. IEEE Trans Electron Dev, 2005, 52: 2317-2320 CrossRef Google Scholar

[49] 万 军, 张 波, 李 肇基, et al. PSJ高压器件的优化设计. 半导体学报, 2006, 27: 1089 Google Scholar

[50] Rutter P, Peake S T. Low voltage trenchMOS combining low specific RDS(on) and QG FOM. In: IEEE International Symposium on Power Semiconductor Devices and ICs. Hiroshima: IEEE Press. 2010, : 325-328 Google Scholar

[51] Kawashima Y, Inomata H, Murakawa K, et al. Narrow-Pitch N-Channel Superjunction UMOSFET for 40-60 V Automotive Application. In: IEEE International Symposium on Power Semiconductor Devices and ICs. Hiroshima: IEEE Press. 2010, : 329-332 Google Scholar

[52] Rutter P, Peake S T. Low voltage superjunction power MOSFET: An application optimized technology. In: 26th Annual IEEE Applied Power Electronics Conference and Exposition, APEC. IEEE, 2011. 491–497. Google Scholar

[53] Antoniou M, Udrea F, Bauer F. The superjunction insulated gate bipolar transistor optimization and modeling. IEEE Trans Electron Dev, 2010, 57: 594-600 CrossRef Google Scholar

[54] Wang Y, Xu L K, Miao Z K. A superjunction schottky barrier diode with trench metal-oxide-semiconductor structure. IEEE Electron Dev Lett, 2012, 33: 1744-1746 CrossRef Google Scholar

[55] Chen X B. Super-junction voltage sustaining layer with alternating semiconductor and high-k dielectric regions. US Patent, 7230310, 2007-06-12. Google Scholar

[56] Chen X B, Huang M. A vertical power MOSFET with an interdigitated drift region using high-k insulator. IEEE Trans Electron Dev, 2012, 59: 2430-2437 CrossRef Google Scholar

[57] Luo X R, Jiang Y H, Zhou K, et al. Ultralow specific on-resistance superjunction vertical DMOS with high-k dielectric pillar. IEEE Electron Dev Lett, 2012, 33: 1042-1044 CrossRef Google Scholar

[58] Luo X R, Cai J Y, Fan Y, et al. Novel low-resistance current path UMOS with high-k dielectric pillars. IEEE Trans Electron Dev, 2013, 60: 2840-2846 CrossRef Google Scholar

[59] Borany J V, Friedrich M, Rub M, et al. Application of ultra-high energy boron implantation for superjunction power (CollMOSTM) devices. Nucl Instrum Meth B, 2005, 237: 62-67 CrossRef Google Scholar

[60] Saggio M, Fagone D, Musumeci S. MDmeshTM: Innovative technology for high voltage Power MOSFETs. In: IEEE International Symposium on Power Semiconductor Devices and ICs. Toulouse: IEEE Press. 2000, : 65-68 Google Scholar

[61] Takahashi K, Kuribayashi H, Kawashima T, et al. 20 mΩ·cm2 660 V super junction MOSFETs fabricated by deep trench etching and epitaxial growth. In: IEEE International Symposium on Power Semiconductor Devices and ICs. Naples: IEEE Press. 2006, : 1-4 Google Scholar

[62] Tamaki T, Nakazawa Y, Kanai H, et al. Vertical charge imbalance effect on 600 V-class trench-filling superjunction power MOSFETs. In: IEEE International Symposium on Power Semiconductor Devices and ICs. San Diego: IEEE Press. 2011, : 308-311 Google Scholar

[63] Li Z H, Ren M, Zhang B, et al. Above 700 V superjunction MOSFETs fabricated by deep trench etching and epitaxial growth. J Semicond, 2010, 31: 084002 CrossRef Google Scholar

[64] Hattori Y, Suzuki T, Kodama M, et al. Shallow angle implantation for extended trench gate power MOSFETs with super junction structure. In: IEEE International Symposium on Power Semiconductor Devices and ICs. Osaka: IEEE Press. 2001, : 427-430 Google Scholar

[65] Luo X R, Wang Y G, Yao G L, et al. The manufacturing method of a trench-type vertical semiconductor device (in Chinese). PRC Patent, ZL201110075550.6, 2011-03-28 [罗小蓉, 王元刚, 姚国亮, 等. 一种槽型纵向半导体器件的制造方法. 中国专利, ZL201110075550.6, 2011-03-28]. Google Scholar

[66] Luo X R, Yao G L, Wang Y G, et al. Manufacturing method of the super junction structure and the super junction semiconductor device (in Chinese). PRC Patent, ZL201110051879.9, 2011-03-04 [罗小蓉, 姚国亮, 等. 超结结构和超结半导体器件的制造方法. 中国专利, ZL201110051879.9, 2011-03-04]. Google Scholar

[67] 星 弼, 张 庆中. 晶体管原理与设计. 北京: 电子工业出版社. 2006, Google Scholar

[68] Chen X B. Method of manufacturing semiconductor device having composite layer. US Patent, 7192872, 2007-03-20. Google Scholar

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1