Phase change memory technology, which is regarded as one of the most promising candidates for the next generation non-volatile memory technology, has achieved rapid development in the past ten years. Meanwhile, related products based on this technology have been put into the market and mass production has come true. With the development of phase change memory technology, the fundamental research has become a hot topic in the fields of information, materials, and so on. Phase change storage medium based on chalcogenide is the basis and core of phase change memory. The performance of phase change memory is determined by phase change material’s performance. In this paper, the industrialization status of phase change memory are briefly introduced firstly, then the research progress of the commonly used GeSbTe phase change materials and the main phase transition mechanism is summarized. Finally, the C doping modification of the traditional GeSbTe and the phase change mechanism of C-doped GeSbTe materials is analyzed.
国家重点基础研究发展计划(2011CBA00607)
中国科学院战略性先导科技专项(XDA09020402)
国家自然科学基金(61076121资助项目)
[1] Ovshinsky S R. Reversible electrical switching phenomena in disordered structures. Phys Rev Lett, 1968, 21: 1450-1453 CrossRef ADS Google Scholar
[2] Jedema F. Phase-change materials: Designing optical media of the future. Nat Mater, 2007, 6: 90-91 CrossRef PubMed ADS Google Scholar
[3] Yamada N, Ohno E, Nishiuchi K, et al. Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. J Appl Phys, 1991, 69: 2849-2856 CrossRef ADS Google Scholar
[4] Neale R G, Nelson D L, Moore G E. Amorphous semiconductors part I: Nonvolatile and reprogramable, read-mostly memory is here. Electronics, 1790, 43: 56-60 Google Scholar
[5] Wuttig M. Phase-change materials: Towards a universal memory?. Nat Mater, 2005, 4: 265-266 CrossRef ADS Google Scholar
[6] Atwood G. Engineering: Phase-change materials for electronic memories. Science, 2008, 321: 210-211 CrossRef PubMed Google Scholar
[7] Raoux S, Burr G W, Breitwisch M J, et al. Phase-change random access memory: A scalable technology. IBM J Res Dev, 2008, 52: 465-479 CrossRef Google Scholar
[8] Tyson S, Wicker G, Lowrey T, et al. Nonvolatile, high density, high performance phase-change memory. Aerosp Conf Proc, 2000, 5: 385-390 Google Scholar
[9] Zhou W. Nanoimprint Lithography: An Enabling Process for Nanofabrication. Berlin: Springer. 2013, Google Scholar
[10] Oh J H, Park J H, Lim Y S, et al. Full integration of highly manufacturable 512 Mb PRAM based on 90 nm technology. In: Proceedings of 2006 International Electron Devices Meeting. New York: IEEE. 2006, : 515-518 Google Scholar
[11] Kau D, Tang S, Karprov I V, et al. A stackable cross point phase change memory. In: Proceedings of 2009 International Electron Devices Meeting. New York: IEEE. 2009, : 571-574 Google Scholar
[12] Kang M J, Park T J, Kwon Y W, et al. PRAM cell technology and characterization in 20 nm node size. In: Proceedings of 2011 International Electron Devices Meeting. New York: IEEE. 2011, Google Scholar
[13] Zhang G B, Yu H Y. Development of three-dimensional memory (3D-M). In: Proceedings of 2016 International Workshop on Information Storage/10th International Symposium on Optical Storage. Bellingham: SPIE. 2016, Google Scholar
[14] Bunton G V, Day S C M, Quilliam R M, et al. The preparation and electrical properties of thin chalcogenide semiconductor films. J Non-Crystalline Solids, 1971, 6: 251-273 CrossRef ADS Google Scholar
[15] Wuttig M, Yamada N. Phase-change materials for rewriteable data storage. Nat Mater, 2007, 6: 824-832 CrossRef PubMed ADS Google Scholar
[16] Raoux S, Ielmini D. Phase change materials and their application to nonvolatile memories. Chem Rev, 2010, 110: 240-267 CrossRef PubMed Google Scholar
[17] Kolobov A V, Fons P, Frenkel A I, et al. Understanding the phase-change mechanism of rewritable optical media. Nat Mater, 2004, 3: 703-708 CrossRef PubMed ADS Google Scholar
[18] Krbal M, Kolobov A V, Fons P, et al. Intrinsic complexity of the melt-quenched amorphous Ge2Sb2Te5 memory alloy. Phys Rev B, 2011, 83: 054203 CrossRef ADS Google Scholar
[19] Kohara S, Kato K, Kimura S, et al. Structural basis for the fast phase change of Ge2Sb2Te5: Ring statistics analogy between the crystal and amorphous states. Appl Phys Lett, 2006, 89: 201910 CrossRef ADS Google Scholar
[20] Akola J, Jones R O. Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe. Phys Rev B, 2007, 76: 235201 CrossRef ADS Google Scholar
[21] Hegedüs J, Elliott S R. Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials. Nat Mater, 2008, 7: 399-405 CrossRef PubMed ADS Google Scholar
[22] Lencer D, Salinga M, Grabowski B, et al. A map for phase-change materials. Nat Mater, 2008, 7: 972-977 CrossRef PubMed ADS Google Scholar
[23] Anbarasu M, Wuttig M. Understanding the structure and properties of phase change materials for data storage applications. J Indian Inst Sci, 2011, 91: 259-274 Google Scholar
[24] Shportko K, Kremers S, Woda M, et al. Resonant bonding in crystalline phase-change materials. Nat Mater, 2008, 7: 653-658 CrossRef PubMed ADS Google Scholar
[25] Sun Z, Zhou J, Ahuja R. Structure of phase change materials for data storage. Phys Rev Lett, 2006, 96: 055507 CrossRef PubMed ADS Google Scholar
[26] Sun Z, Zhou J, Blomqvist A, et al. Formation of large voids in the amorphous phase-change memory Ge2Sb2Te5 alloy. Phys Rev Lett, 2009, 102: 075504 CrossRef PubMed ADS Google Scholar
[27] Liu X Q, Li X B, Zhang L, et al. New structural picture of the Ge2Sb2Te5 phase-change alloy. Phys Rev Lett, 2011, 106: 025501 CrossRef PubMed ADS Google Scholar
[28] Li X B, Liu X Q, Liu X, et al. Role of electronic excitation in the amorphization of Ge-Sb-Te alloys. Phys Rev Lett, 2011, 107: 015501 CrossRef PubMed ADS Google Scholar
[29] Jung M C, Lee Y M, Kim H D, et al. Ge nitride formation in N-doped amorphous Ge2Sb2Te5. Appl Phys Lett, 2007, 91: 083514 CrossRef ADS Google Scholar
[30]
Prasai
B,
Chen
G,
Drabold
D A.
Direct
[31] Vinod E M, Ramesh K, Sangunni K S. Structural transition and enhanced phase transition properties of Se doped Ge2Sb2Te5 alloys. Sci Rep, 2015, 5: 8050 CrossRef PubMed ADS Google Scholar
[32] Zhou W, Wu L, Zhou X, et al. High thermal stability and low density variation of carbon-doped Ge2Sb2Te5 for phase-change memory application. Appl Phys Lett, 2014, 105: 243113 CrossRef ADS Google Scholar
[33] Zhou X, Xia M, Rao F, et al. Understanding phase-change behaviors of carbon-doped Ge2Sb2Te5 for phase-change memory application. ACS Appl Mater Interf, 2014, 6: 14207-14214 CrossRef PubMed Google Scholar
[34]
Cho
E,
Youn
Y,
Han
S.
Enhanced amorphous stability of carbon-doped Ge2Sb2Te5:
[35] Borisenko K B, Chen Y, Cockayne D J H, et al. Understanding atomic structures of amorphous C-doped Ge2Sb2Te5 phase-change memory materials. Acta Mater, 2011, 59: 4335-4342 CrossRef Google Scholar
Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有
京ICP备18024590号-1