The pattern with discharge gap of D2h symmetry is obtained in dielectric barrier discharge for the first time. The discharge gap belonged to D2h point group is consisted of four striped structures which is made up circles and rectangles. The evolution of the pattern with this discharge gap is from D4h to D2h through self-organization. The device also achieves a tunable plasma photonic crystal. The spatial-temporal structure in circular areas investigated by an intensified charge coupled device camera (ICCD) shows that it is an interleaving of three different sublattices, which are central spots, spots on the boundary, circular halos, respectively. The circular halos investigated by a high-speed video camera show that the halos are randomly filaments. The plasma parameters of different sublattices are studied by a spectrograph. The formation mechanisms of the pattern and the circular halos are analyzed by wall charges theory.
国家自然科学基金项目(11375051)
河北省教育厅项目(LGRC001)
[1] Nath R, Santos L. Faraday patterns in two-dimensional dipolar Bose-Einstein condensates. Phys Rev A, 2010, 81: 033626 CrossRef ADS arXiv Google Scholar
[2] Bestehorn M, Pototsky A. Faraday instability and nonlinear pattern formation of a two-layer system: A reduced model. Phys Rev Fluids, 2016, 1: 063905 CrossRef ADS Google Scholar
[3] Périnet N, Gutiérrez P, Urra H, et al. Streaming patterns in Faraday waves. J Fluid Mech, 2017, 819: 285-310 CrossRef ADS arXiv Google Scholar
[4] Paul S, Ghosh S, Ray D S. Nonequilibrium transition and pattern formation in a linear reaction-diffusion system with self-regulated kinetics. Phys Rev E, 2018, 97: 022213 CrossRef PubMed ADS Google Scholar
[5] Jia Y, Cai Y, Shi H, et al. Turing patterns in a reaction-diffusion epidemic model. Int J Biomath, 2018, 11: 1850025 CrossRef Google Scholar
[6] Wu R, Zhou Y, Shao Y, et al. Bifurcation and turing patterns of reaction-diffusion activator-inhibitor model. Physica A, 2017, 482: 597-610 CrossRef ADS Google Scholar
[7] Sergent A, Quéré P L. Long time evolution of large-scale patterns in a rectangular Rayleigh-Bénard cell. J Phys-Conf Ser, 2011, 318: 082010 CrossRef ADS Google Scholar
[8] Rogers J L, Schatz M F, Brausch O, et al. Superlattice patterns in vertically oscillated Rayleigh-Bénard convection. Phys Rev Lett, 2000, 85: 4281-4284 CrossRef PubMed ADS Google Scholar
[9] Lohaus T, Herkenhoff N, Shankar R, et al. Feed flow patterns of combined Rayleigh-Bénard convection and membrane permeation. J Membrane Sci, 2018, 549: 60-66 CrossRef Google Scholar
[10] Bernecker B, Callegari T, Boeuf J P. Evidence of a new form of self-organization in DBD Plasmas: The quincunx structure. J Phys D-Appl Phys, 2011, 44: 262002 CrossRef ADS Google Scholar
[11] Shi H, Wang Y, Wang D. Nonlinear behavior in the time domain in argon atmospheric dielectric-barrier discharges. Phys Plasmas, 2008, 15: 122306 CrossRef ADS Google Scholar
[12] McKay K, Donaghy D, He F, et al. Studying Townsend and glow modes in an atmospheric-pressure DBD using mass spectrometry. Plasma Sources Sci Technol, 2018, 27: 015002 CrossRef ADS Google Scholar
[13] Bogaczyk M, Tschiersch R, Nemschokmichal S, et al. Spatio-temporal characterization of the multiple current pulse regime of diffuse barrier discharges in helium with nitrogen admixtures. J Phys D-Appl Phys, 2017, 50: 415202 CrossRef ADS Google Scholar
[14] Dosoudilová L, Tschiersch R, Bogaczyk M, et al. Investigation of helium barrier discharges with small admixtures of oxygen. J Phys D-Appl Phys, 2015, 48: 355204 CrossRef ADS Google Scholar
[15] Zanin A L, Gurevich E L, Moskalenko A S, et al. Rotating hexagonal pattern in a dielectric barrier discharge system. Phys Rev E, 2004, 70: 036202 CrossRef PubMed ADS Google Scholar
[16] Gurevich E L, Zanin A L, Moskalenko A S, et al. Concentric-Ring patterns in a dielectric barrier discharge system. Phys Rev Lett, 2003, 91: 154501 CrossRef PubMed ADS Google Scholar
[17] Wild R, Schumann T, Stollenwerk L. Controlled structures in laterally patterned barrier discharges by illumination of the semiconductor electrode. Plasma Sources Sci Technol, 2014, 23: 054004 CrossRef ADS Google Scholar
[18] Wild R, Stollenwerk L. Breakdown of order in a self-organised barrier discharge. Eur Phys J D, 2012, 66: 214 CrossRef ADS Google Scholar
[19] Du T, Dong L F, Hao F, et al. Study on a new type of square superlattice pattern in dielectric barrier discharge (in Chinese). Sci Sin-Phys Mech Astron, 2017, 47: 035201 [杜天, 董丽芳, 郝芳, 等. 介质阻挡放电中新型超四边形斑图的研究. 中国科学: 物理学 力学 天文学, 2017, 47: 035201]. Google Scholar
[20] Hao F, Dong L F, Du T, et al. Study on the dark-ring white-eye square super-lattice pattern in dielectric barrier discharge (in Chinese). Sci Sin-Phys Mech Astron, 2017, 47: 095201 [郝芳, 董丽芳, 杜天, 等. 介质阻挡放电中暗环白眼超四边形斑图的研究. 中国科学: 物理学 力学 天文学, 2017, 47: 095201]. Google Scholar
[21] Duan X, Ouyang J, Zhao X, et al. Pattern formation and boundary effect in dielectric barrier glow discharge. Phys Rev E, 2009, 80: 016202 CrossRef PubMed ADS Google Scholar
[22] Gao X, Dong L, Wang H, et al. Three-dimensional patterns in dielectric barrier discharge with “H” shaped gas gap. Phys Plasmas, 2016, 23: 083526 CrossRef ADS Google Scholar
[23] Feng J, Dong L, Wei L, et al. Concentric superlattice pattern in dielectric barrier discharge. Phys Plasmas, 2016, 23: 093502 CrossRef ADS Google Scholar
[24] Dong L, Fan W, He Y, et al. Square superlattice pattern in dielectric barrier discharge. Phys Rev E, 2006, 73: 066206 CrossRef PubMed ADS Google Scholar
[25] Li W, Zhang H T, Gong M L, et al. Plasma photonics crystal (in Chinese). Opt Tech, 2004, 30: 263–266 [李伟, 张海涛, 巩马理, 等. 等离子体光子晶体. 光学技术, 2004, 30: 263–266]. Google Scholar
Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有
京ICP备18024590号-1