Quantum steering is a kind of quantum feature between quantum entanglement and Bell non-locality. Due to its special asymmetry, quantum steering plays an important role in many aspects of quantum information processing and thus has been widely concerned. There are many contributions on quantum steering in bipartite systems up to now, while tripartite systems have more complex structures than bipartite systems and then have more diversified steering scenarios. In this paper, two types of quantum steering scenarios are introduced for a tripartite quantum system, named “one-sided device-independent steering" and “two-sided device-independent steering". Each of them contains two levels according to the separability of the local hidden states and the independence of the local hidden variables, respectively. Based on giving the mathematical definitions of these steering scenarios, some necessary and sufficient conditions for a state to be unsteerable are obtained and sufficient conditions for a state to be steerable are also established.
国家自然科学基金(11871318117710091157121111571213)
中央高校基本科研业务费专项资金(GK201703010GK201801011)
陕西省青年科技新星项目(2018KJXX-054)
[1] Blok M S, Kalb N, Reiserer A. Towards quantum networks of single spins: analysis of a quantum memory with an optical interface in diamond. 2015, 184: 173-182 CrossRef PubMed ADS Google Scholar
[2] Deng D L, Li X, Das Sarma S. Quantum Entanglement in Neural Network States. 2017, 7: 021021 CrossRef ADS arXiv Google Scholar
[3] Chiribella G, D'Ariano G M, Perinotti P. Theoretical framework for quantum networks. 2009, 80: 022339 CrossRef ADS arXiv Google Scholar
[4] Wang W H, Cao H X, Chen Z L. Quantitative conditions for time evolution in terms of the von Neumann equation. 2018, 61: 070312 CrossRef ADS Google Scholar
[5] Chen L B, Lu H. Quantum networks for implementing locally and conclusively a nonlocal qudit Toffoli gate: Designing and optimizing (in Chinese). 2016, 46: 110301 CrossRef ADS Google Scholar
[6] Chen L B, Lu H. Quantum networks for implementing effiently a nonlocal N-qubit controlled unitary gate via non-symmetric quantum channels: Designing and optimizing (in Chinese). 2017, 47: 120301 CrossRef ADS Google Scholar
[7] Wang C, Deng F G, Li Y S. Quantum secure direct communication with high-dimension quantum superdense coding. 2005, 71: 44305 CrossRef ADS Google Scholar
[8] Gong Z R, Zhang Z W, Xu D Z. Spontaneous decoherence of coupled harmonic oscillators confined in a ring. 2018, 61: 040311 CrossRef ADS Google Scholar
[9] Li B, Jiang S H, Fei S M. A note on the Bloch representation of absolutely maximally entangled states. 2018, 61: 040321 CrossRef ADS arXiv Google Scholar
[10] DiVincenzo D P. Quantum Computation. 1995, 270: 255-261 CrossRef ADS Google Scholar
[11] Zhou J, Liu B J, Hong Z P. Fast holonomic quantum computation based on solid-state spins with all-optical control. 2018, 61: 010312 CrossRef ADS arXiv Google Scholar
[12] Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. 2nd ed. Cambridge: Cambridge University Press, 2010. Google Scholar
[13] Luo S. Using measurement-induced disturbance to characterize correlations as classical or quantum. 2008, 77: 022301 CrossRef ADS Google Scholar
[14] Guo Z H, Cao H X, Chen Z L. Operational properties and matrix representations of quantum measures. 2011, 56: 1671-1678 CrossRef ADS Google Scholar
[15] Ye M Y, Zhang Y S, Guo G C. Quantum entanglement and quantum operation (in Chinese). 2008, 51: 14-21 CrossRef ADS Google Scholar
[16] XiaoYu C, LiZhen J. Quantum separable criterion based on characteristic function (in Chinese). 2018, 48: 020302 CrossRef ADS Google Scholar
[17] XiaoYuan Y, XinWei Z, JunLing C. A new method for constructing entangled states via orthogonal arrays (in Chinese). 2018, 48: 020301 CrossRef ADS Google Scholar
[18] Wang W H, Cao H X, Chen Z L. Quantitative conditions for time evolution in terms of the von Neumann equation. 2018, 61: 070312 CrossRef ADS Google Scholar
[19] Yang Y, Cao H. Separability criterions of multipartite states. 2018, 72: 143 CrossRef ADS Google Scholar
[20] Schr?dinger E, Born M. Discussion of Probability Relations between Separated Systems. 1935, 31: 555 CrossRef ADS Google Scholar
[21] Werner R F. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. 1989, 40: 4277-4281 CrossRef ADS Google Scholar
[22] Wiseman H M, Jones S J, Doherty A C. Steering, Entanglement, Nonlocality, and the Einstein-Podolsky-Rosen Paradox. 2007, 98: 140402 CrossRef PubMed ADS Google Scholar
[23] Jones S J, Wiseman H M, Doherty A C. Entanglement, Einstein-Podolsky-Rosen correlations, Bell nonlocality, and steering. 2007, 76: 052116 CrossRef ADS arXiv Google Scholar
[24] Bowles J, Vértesi T, Quintino M T. One-way Einstein-Podolsky-Rosen Steering. 2014, 112: 200402 CrossRef ADS arXiv Google Scholar
[25] Branciard C, Cavalcanti E G, Walborn S P. One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering. 2012, 85: 010301 CrossRef ADS arXiv Google Scholar
[26] Law Y Z, Thinh L P, Bancal J D. Quantum randomness extraction for various levels of characterization of the devices. 2014, 47: 424028 CrossRef ADS arXiv Google Scholar
[27] Reid M D. Signifying quantum benchmarks for qubit teleportation and secure quantum communication using Einstein-Podolsky-Rosen steering inequalities. 2013, 88: 062338 CrossRef ADS arXiv Google Scholar
[28] Piani M, Watrous J. Necessary and Sufficient Quantum Information Characterization of Einstein-Podolsky-Rosen Steering. 2015, 114: 060404 CrossRef PubMed ADS arXiv Google Scholar
[29] Chen J L, Ye X J, Wu C. All-Versus-Nothing Proof of Einstein-Podolsky-Rosen Steering. 2013, 3: 2143 CrossRef PubMed ADS arXiv Google Scholar
[30] Nguyen H C, Luoma K. Pure steered states of Einstein-Podolsky-Rosen steering. 2017, 95: 042117 CrossRef ADS Google Scholar
[31] Wu C, Chen J L, Ye X J. Test of Einstein-Podolsky-Rosen Steering Based on the All-Versus-Nothing Proof. 2015, 4: 4291 CrossRef PubMed ADS arXiv Google Scholar
[32] Sun K, Ye X J, Xu J S. Experimental Quantification of Asymmetric Einstein-Podolsky-Rosen Steering. 2016, 116: 160404 CrossRef PubMed ADS arXiv Google Scholar
[33] Cavalcanti E G, He Q Y, Reid M D. Unified criteria for multipartite quantum nonlocality. 2011, 84: 032115 CrossRef ADS arXiv Google Scholar
[34] He Q Y, Reid M D. Genuine Multipartite Einstein-Podolsky-Rosen Steering. 2013, 111: 250403 CrossRef PubMed ADS arXiv Google Scholar
[35] Cavalcanti D, Skrzypczyk P, Aguilar G H. Detection of entanglement in asymmetric quantum networks and multipartite quantum steering. 2015, 6: 7941 CrossRef PubMed ADS arXiv Google Scholar
[36] Quan Q, Zhu H, Liu S Y. Steering Bell-diagonal states. 2016, 6: 22025 CrossRef PubMed ADS arXiv Google Scholar
[37] Chen J L, Ren C, Chen C. Bell's Nonlocality Can be Detected by the Violation of Einstein-Podolsky-Rosen Steering Inequality.. 2016, 6: 39063 CrossRef PubMed ADS arXiv Google Scholar
[38] Cavalcanti D, Skrzypczyk P. Quantum steering: a review with focus on semidefinite programming. 2017, 80: 024001 CrossRef PubMed ADS arXiv Google Scholar
[39] Zheng Y L. Criteria for quantum entanglement and quantum steering (in Chinese). Dissertation for Doctoral Degree. Hefei: University of Science and Technology of China, 2017. Google Scholar
[40] Ren C, Su H Y, Shi H. Maximally steerable mixed state based on the linear steering inequality and the Clauser-Horne-Shimony-Holt-like steering inequality. 2018, 97: 032119 CrossRef ADS Google Scholar
[41] Zheng C, Guo Z, Cao H. Generalized Steering Robustness of Bipartite Quantum States. 2018, 57: 1787-1801 CrossRef ADS Google Scholar
[42] Li Z W, Guo Z H, Cao H X. Some Characterizations of EPR Steering. 2018, 57: 3285-3295 CrossRef ADS Google Scholar
[43] Cao H X, Guo Z H. Characterizing Bell nonlocality and EPR steering. 2019, 62: 30311 CrossRef ADS Google Scholar
[44] Zeng Q, Wang B, Li P. Experimental High-Dimensional Einstein-Podolsky-Rosen Steering. 2018, 120: 030401 CrossRef PubMed ADS Google Scholar
[45] Guo Z, Cao H. A Classification of Correlations of Tripartite Mixed States. 2013, 52: 1768-1779 CrossRef ADS Google Scholar
Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有
京ICP备18024590号-1