References
[1]
Lu K Q, Liu J X. Static and dynamic properties of granular matter (I) (in Chinese). Physics, 2004, 33: 629–635 [陆坤权, 刘寄星. 颗粒物质(上). 物理, 2004, 33: 629–635].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lu K Q, Liu J X. Static and dynamic properties of granular matter (I) (in Chinese). Physics, 2004, 33: 629–635 [陆坤权, 刘寄星. 颗粒物质(上). 物理, 2004, 33: 629–635]&
[2]
Lu K Q, Liu J X. Static and dynamic properties of granular matter (II) (in Chinese). Physics, 2004, 33: 713–721 [陆坤权, 刘寄星. 颗粒物质(下). 物理, 2004, 33: 713–721].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lu K Q, Liu J X. Static and dynamic properties of granular matter (II) (in Chinese). Physics, 2004, 33: 713–721 [陆坤权, 刘寄星. 颗粒物质(下). 物理, 2004, 33: 713–721]&
[3]
Woodle
G R,
Munro
J M.
Particle motion and mixing in a rotary kiln.
1993, 76: 241-245
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Particle motion and mixing in a rotary kiln&author=Woodle G R&author=Munro J M&publication_year=1993&volume=76&pages=241-245
[4]
Jaeger
H M,
Liu
C H,
Nagel
S R.
Relaxation at the angle of repose.
2008, 62: 40-43
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Relaxation at the angle of repose&author=Jaeger H M&author=Liu C H&author=Nagel S R&publication_year=2008&volume=62&pages=40-43
[5]
Zimber
F,
Kollmer
J E,
P?schel
T.
Polydirectional stability of granular matter.
2013, 111: 168003
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Polydirectional stability of granular matter&author=Zimber F&author=Kollmer J E&author=P?schel T&publication_year=2013&volume=111&pages=168003
[6]
Candelier
R,
Dauchot
O.
Creep motion of an intruder within a granular glass close to jamming.
2016, 103: 128001
CrossRef
PubMed
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Creep motion of an intruder within a granular glass close to jamming&author=Candelier R&author=Dauchot O&publication_year=2016&volume=103&pages=128001
[7]
Wang
Z,
Zhang
J.
Spatiotemporal chaotic unjamming and jamming in granular avalanches.
2015, 5: 8128
CrossRef
PubMed
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Spatiotemporal chaotic unjamming and jamming in granular avalanches&author=Wang Z&author=Zhang J&publication_year=2015&volume=5&pages=8128
[8]
Sun Q C. Granular structure and the non-equilibrium thermodynamics (in Chinese). Acta Phys Sin, 2015, 64: 076101 [孙其诚. 颗粒介质的结构及热力学. 物理学报, 2015, 64: 076101].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sun Q C. Granular structure and the non-equilibrium thermodynamics (in Chinese). Acta Phys Sin, 2015, 64: 076101 [孙其诚. 颗粒介质的结构及热力学. 物理学报, 2015, 64: 076101]&
[9]
Ogawa
S,
Umemura
A,
Oshima
N.
On the equations of fully fluidized granular materials.
1980, 31: 483-493
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=On the equations of fully fluidized granular materials&author=Ogawa S&author=Umemura A&author=Oshima N&publication_year=1980&volume=31&pages=483-493
[10]
Dixon
P K,
Durian
D J.
Speckle visibility spectroscopy and variable granular fluidization.
2003, 90: 184302
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Speckle visibility spectroscopy and variable granular fluidization&author=Dixon P K&author=Durian D J&publication_year=2003&volume=90&pages=184302
[11]
Bandyopadhyay
R,
Gittings
A S,
Suh
S S, et al.
Speckle-visibility spectroscopy: A tool to study time-varying dynamics.
2005, 76: 093110
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Speckle-visibility spectroscopy: A tool to study time-varying dynamics&author=Bandyopadhyay R&author=Gittings A S&author=Suh S S&publication_year=2005&volume=76&pages=093110
[12]
Pohlman
N A,
Severson
B L,
Ottino
J M, et al.
Surface roughness effects in granular matter: Influence on angle of repose and the absence of segregation.
2006, 73: 031304
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Surface roughness effects in granular matter: Influence on angle of repose and the absence of segregation&author=Pohlman N A&author=Severson B L&author=Ottino J M&publication_year=2006&volume=73&pages=031304
[13]
Félix
G,
Falk
V,
D’Ortona
U.
Granular flows in a rotating drum: The scaling law between velocity and thickness of the flow.
2007, 22: 25-31
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Granular flows in a rotating drum: The scaling law between velocity and thickness of the flow&author=Félix G&author=Falk V&author=D’Ortona U&publication_year=2007&volume=22&pages=25-31
[14]
Gravish
N,
Goldman
D I.
Effect of volume fraction on granular avalanche dynamics.
2014, 90: 032202
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Effect of volume fraction on granular avalanche dynamics&author=Gravish N&author=Goldman D I&publication_year=2014&volume=90&pages=032202
[15]
Ramachandran
R,
Poon
J M H,
Sanders
C F W, et al.
Experimental studies on distributions of granule size, binder content and porosity in batch drum granulation: Inferences on process modelling requirements and process sensitivities.
2008, 188: 89-101
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Experimental studies on distributions of granule size, binder content and porosity in batch drum granulation: Inferences on process modelling requirements and process sensitivities&author=Ramachandran R&author=Poon J M H&author=Sanders C F W&publication_year=2008&volume=188&pages=89-101
[16]
Vandewalle
N,
Lumay
G,
Gerasimov
O, et al.
The influence of grain shape, friction and cohesion on granular compaction dynamics.
2007, 22: 241-248
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=The influence of grain shape, friction and cohesion on granular compaction dynamics&author=Vandewalle N&author=Lumay G&author=Gerasimov O&publication_year=2007&volume=22&pages=241-248
[17]
Lu
G,
Third
J R,
Müller
C R.
Discrete element models for non-spherical particle systems: From theoretical developments to applications.
2015, 127: 425-465
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Discrete element models for non-spherical particle systems: From theoretical developments to applications&author=Lu G&author=Third J R&author=Müller C R&publication_year=2015&volume=127&pages=425-465
[18]
Liu
X,
Zhou
S,
Specht
E.
Avalanche time of granular flows in rotary kilns.
2010, 14B: 1029-1033
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Avalanche time of granular flows in rotary kilns&author=Liu X&author=Zhou S&author=Specht E&publication_year=2010&volume=14B&pages=1029-1033
[19]
Cleary
P W.
DEM prediction of industrial and geophysical particle flows.
2010, 8: 106-118
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=DEM prediction of industrial and geophysical particle flows&author=Cleary P W&publication_year=2010&volume=8&pages=106-118
[20]
Dubé
O,
Alizadeh
E,
Chaouki
J, et al.
Dynamics of non-spherical particles in a rotating drum.
2013, 101: 486-502
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dynamics of non-spherical particles in a rotating drum&author=Dubé O&author=Alizadeh E&author=Chaouki J&publication_year=2013&volume=101&pages=486-502
[21]
Benedito
W M,
Duarte
C R,
de Souza Barrozo
M A, et al.
An investigation of CFD simulations capability in treating non-spherical particle dynamics in a rotary drum.
2018, 332: 171-177
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=An investigation of CFD simulations capability in treating non-spherical particle dynamics in a rotary drum&author=Benedito W M&author=Duarte C R&author=de Souza Barrozo M A&publication_year=2018&volume=332&pages=171-177
[22]
Altuhafi
F,
O’Sullivan
C,
Cavarretta
I.
Analysis of an image-based method to quantify the size and shape of sand particles.
2013, 139: 1290-1307
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Analysis of an image-based method to quantify the size and shape of sand particles&author=Altuhafi F&author=O’Sullivan C&author=Cavarretta I&publication_year=2013&volume=139&pages=1290-1307
[23]
Barrett
P J.
The shape of rock particles, a critical review.
1980, 27: 291-303
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=The shape of rock particles, a critical review&author=Barrett P J&publication_year=1980&volume=27&pages=291-303
[24]
B?rzs?nyi
T,
Stannarius
R.
Granular materials composed of shape-anisotropic grains.
2013, 9: 7401-7418
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Granular materials composed of shape-anisotropic grains&author=B?rzs?nyi T&author=Stannarius R&publication_year=2013&volume=9&pages=7401-7418
[25]
Igathinathane
C,
Pordesimo
L O,
Columbus
E P, et al.
Sieveless particle size distribution analysis of particulate materials through computer vision.
2009, 66: 147-158
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sieveless particle size distribution analysis of particulate materials through computer vision&author=Igathinathane C&author=Pordesimo L O&author=Columbus E P&publication_year=2009&volume=66&pages=147-158
[26]
Goodman
J W,
Narducci
L M.
Statistical optics.
1986, 39: 126
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Statistical optics&author=Goodman J W&author=Narducci L M&publication_year=1986&volume=39&pages=126
[27]
Yang
H,
Zhang
B F,
Li
R, et al.
Particle dynamics in avalanche flow of irregular sand particles in the slumping regime of a rotating drum.
2017, 311: 439-448
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Particle dynamics in avalanche flow of irregular sand particles in the slumping regime of a rotating drum&author=Yang H&author=Zhang B F&author=Li R&publication_year=2017&volume=311&pages=439-448
[28]
Li
R,
Yang
H,
Zheng
G, et al.
Double speckle-visibility spectroscopy for the dynamics of a passive layer in a rotating drum.
2016, 295: 167-174
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Double speckle-visibility spectroscopy for the dynamics of a passive layer in a rotating drum&author=Li R&author=Yang H&author=Zheng G&publication_year=2016&volume=295&pages=167-174
[29]
Brinkmeier
M,
D?rre
K,
Stephan
J, et al.
Two-beam cross-correlation: A method to characterize transport phenomena in micrometer-sized structures.
1999, 71: 609-616
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Two-beam cross-correlation: A method to characterize transport phenomena in micrometer-sized structures&author=Brinkmeier M&author=D?rre K&author=Stephan J&publication_year=1999&volume=71&pages=609-616
[30]
Yang H, Zhang G H, Wang Y J, et al. Measurement techniques of grain motion and inter-grain structures in dense granular materials (in Chinese). Adv Mech, 2018, 48: 201812 [杨晖, 张国华, 王宇杰, 等. 密集颗粒体系的颗粒运动及结构测量技术. 力学进展, 2018, 48: 201812].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yang H, Zhang G H, Wang Y J, et al. Measurement techniques of grain motion and inter-grain structures in dense granular materials (in Chinese). Adv Mech, 2018, 48: 201812 [杨晖, 张国华, 王宇杰, 等. 密集颗粒体系的颗粒运动及结构测量技术. 力学进展, 2018, 48: 201812]&
[31]
Dong
L H,
Zhao
P B.
Application of improved canny edge detection algorithm in coal-rock interface recognition.
2012, 220-223: 1279-1283
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Application of improved canny edge detection algorithm in coal-rock interface recognition&author=Dong L H&author=Zhao P B&publication_year=2012&volume=220-223&pages=1279-1283
[32]
Mellmann
J.
The transverse motion of solids in rotating cylinders—Forms of motion and transition behavior.
2001, 118: 251-270
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The transverse motion of solids in rotating cylinders—Forms of motion and transition behavior&author=Mellmann J&publication_year=2001&volume=118&pages=251-270
[33]
Henein
H,
Brimacombe
J K,
Watkinson
A P.
Experimental study of transverse bed motion in rotary kilns.
1983, 14: 191-205
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Experimental study of transverse bed motion in rotary kilns&author=Henein H&author=Brimacombe J K&author=Watkinson A P&publication_year=1983&volume=14&pages=191-205
[34]
Feng X, Zhang G H, Sun Q C, et al. Effects of size polydispersity on mechanical and geometrical properties of granular system (in Chinese). Acta Phys Sin, 2013, 62: 184501 [冯旭, 张国华, 孙其诚. 颗粒尺寸分散度对颗粒体系力学和几何结构特性的影响. 物理学报, 2013, 62: 184501].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Feng X, Zhang G H, Sun Q C, et al. Effects of size polydispersity on mechanical and geometrical properties of granular system (in Chinese). Acta Phys Sin, 2013, 62: 184501 [冯旭, 张国华, 孙其诚. 颗粒尺寸分散度对颗粒体系力学和几何结构特性的影响. 物理学报, 2013, 62: 184501]&
[35]
Lajeunesse
E,
Monnier
J B,
Homsy
G M.
Granular slumping on a horizontal surface.
2015, 17: 103302
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Granular slumping on a horizontal surface&author=Lajeunesse E&author=Monnier J B&author=Homsy G M&publication_year=2015&volume=17&pages=103302
[36]
Ouyang H W, Huang L H, Cheng L, et al. Behavior of hysteretic transition of granular flow regimes in a slow rotating drum (in Chinese). Mater Sci Eng Powder Metall, 2013, 18: 155–162 [欧阳鸿武, 黄立华, 程亮, 等. 低速转鼓中颗粒流态的滞后转变行为. 粉末冶金材料科学与工程, 2013, 18: 155–162].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ouyang H W, Huang L H, Cheng L, et al. Behavior of hysteretic transition of granular flow regimes in a slow rotating drum (in Chinese). Mater Sci Eng Powder Metall, 2013, 18: 155–162 [欧阳鸿武, 黄立华, 程亮, 等. 低速转鼓中颗粒流态的滞后转变行为. 粉末冶金材料科学与工程, 2013, 18: 155–162]&
[37]
Zhang G H, Sun Q C, Huang F F, et al. Jamming phenomena of a two-dimensional frictional granular system under isotropic confining (in Chinese). Acta Phys Sin, 2011, 60: 124502 [张国华, 孙其诚, 黄芳芳, 等. 摩擦颗粒体系各向同性压缩过程中的堵塞行为. 物理学报, 2011, 60: 124502].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhang G H, Sun Q C, Huang F F, et al. Jamming phenomena of a two-dimensional frictional granular system under isotropic confining (in Chinese). Acta Phys Sin, 2011, 60: 124502 [张国华, 孙其诚, 黄芳芳, 等. 摩擦颗粒体系各向同性压缩过程中的堵塞行为. 物理学报, 2011, 60: 124502]&
[38]
Xu
X,
Sun
Q,
Jin
F, et al.
Measurements of velocity and pressure of a collapsing granular pile.
2016, 303: 147-155
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Measurements of velocity and pressure of a collapsing granular pile&author=Xu X&author=Sun Q&author=Jin F&publication_year=2016&volume=303&pages=147-155
[39]
Ono
I K,
O’Hern
C S,
Durian
D J, et al.
Effective temperatures of a driven system near jamming.
2002, 89: 095703
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Effective temperatures of a driven system near jamming&author=Ono I K&author=O’Hern C S&author=Durian D J&publication_year=2002&volume=89&pages=095703
[40]
Lim
S Y,
Davidson
J F,
Forster
R N, et al.
Avalanching of granular material in a horizontal slowly rotating cylinder: PEPT studies.
2003, 138: 25-30
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Avalanching of granular material in a horizontal slowly rotating cylinder: PEPT studies&author=Lim S Y&author=Davidson J F&author=Forster R N&publication_year=2003&volume=138&pages=25-30