References
[1]
Sharma
A,
Tyagi
V V,
Chen
C R, et al.
Review on thermal energy storage with phase change materials and applications.
Renew Sust Energy Rev,
2009, 13: 318-345
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Review on thermal energy storage with phase change materials and applications&author=Sharma A&author=Tyagi V V&author=Chen C R&publication_year=2009&journal=Renew Sust Energy Rev&volume=13&pages=318-345
[2]
Hauer A. Sorption theory for thermal energy storage. In: Paksoy H, ed. Thermal Energy Storage for Sustainable Energy Consumption. Netherlands: Springer. 2007, 234: 393–408.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hauer A. Sorption theory for thermal energy storage. In: Paksoy H, ed. Thermal Energy Storage for Sustainable Energy Consumption. Netherlands: Springer. 2007, 234: 393–408&
[3]
Pohlmann
C,
R?ntzsch
L,
Kalinichenka
S, et al.
Hydrogen storage properties of compacts of melt-spun Mg90Ni10 flakes and expanded natural graphite.
J Alloy Compd,
2011, 509: S625-S628
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hydrogen storage properties of compacts of melt-spun Mg90Ni10 flakes and expanded natural graphite&author=Pohlmann C&author=R?ntzsch L&author=Kalinichenka S&publication_year=2011&journal=J Alloy Compd&volume=509&pages=S625-S628
[4]
Bugaje
I M.
Enhancing the thermal response of latent heat storage systems.
Int J Energy Res,
1997, 21: 759-766
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Enhancing the thermal response of latent heat storage systems&author=Bugaje I M&publication_year=1997&journal=Int J Energy Res&volume=21&pages=759-766
[5]
Koh
J C Y,
Stevens
R L.
Enhancement of cooling effectiveness by porous materials in coolant passage.
J Heat Trans,
1975, 97: 309-311
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Enhancement of cooling effectiveness by porous materials in coolant passage&author=Koh J C Y&author=Stevens R L&publication_year=1975&journal=J Heat Trans&volume=97&pages=309-311
[6]
Chow
L C,
Zhong
J K,
Beam
J E.
Thermal conductivity enhancement for phase change storage media.
Int Commun Heat Mass,
1996, 23: 91-100
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Thermal conductivity enhancement for phase change storage media&author=Chow L C&author=Zhong J K&author=Beam J E&publication_year=1996&journal=Int Commun Heat Mass&volume=23&pages=91-100
[7]
Fukai
J,
Hamada
Y,
Morozumi
Y, et al.
Effect of carbon-fiber brushes on conductive heat transfer in phase change materials.
Int J Heat Mass Transfer,
2002, 45: 4781-4792
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Effect of carbon-fiber brushes on conductive heat transfer in phase change materials&author=Fukai J&author=Hamada Y&author=Morozumi Y&publication_year=2002&journal=Int J Heat Mass Transfer&volume=45&pages=4781-4792
[8]
Fukai
J,
Hamada
Y,
Morozumi
Y, et al.
Improvement of thermal characteristics of latent heat thermal energy storage units using carbon-fiber brushes: Experiments and modeling.
Int J Heat Mass Transfer,
2003, 46: 4513-4525
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Improvement of thermal characteristics of latent heat thermal energy storage units using carbon-fiber brushes: Experiments and modeling&author=Fukai J&author=Hamada Y&author=Morozumi Y&publication_year=2003&journal=Int J Heat Mass Transfer&volume=46&pages=4513-4525
[9]
Elgafy
A,
Lafdi
K.
Effect of carbon nanofiber additives on thermal behavior of phase change materials.
Carbon,
2005, 43: 3067-3074
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Effect of carbon nanofiber additives on thermal behavior of phase change materials&author=Elgafy A&author=Lafdi K&publication_year=2005&journal=Carbon&volume=43&pages=3067-3074
[10]
Hoogendoorn
C J,
Bart
G C J.
Performance and modelling of latent heat stores.
Sol Energy,
1992, 48: 53-58
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Performance and modelling of latent heat stores&author=Hoogendoorn C J&author=Bart G C J&publication_year=1992&journal=Sol Energy&volume=48&pages=53-58
[11]
Mauran
S,
Prades
P,
L’Haridon
F.
Heat and mass transfer in consolidated reacting beds for thermochemical systems.
Heat Recovery Systems CHP,
1993, 13: 315-319
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Heat and mass transfer in consolidated reacting beds for thermochemical systems&author=Mauran S&author=Prades P&author=L’Haridon F&publication_year=1993&journal=Heat Recovery Systems CHP&volume=13&pages=315-319
[12]
Tong
X,
Khan
J A,
RuhulAmin
M.
Enhancement of heat transfer by inserting a metal matrix into a phase change material.
Numer Heat Tr A-Appl,
1996, 30: 125-141
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Enhancement of heat transfer by inserting a metal matrix into a phase change material&author=Tong X&author=Khan J A&author=RuhulAmin M&publication_year=1996&journal=Numer Heat Tr A-Appl&volume=30&pages=125-141
[13]
Py
X,
Olives
R,
Mauran
S.
Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material.
Int J Heat Mass Transfer,
2001, 44: 2727-2737
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material&author=Py X&author=Olives R&author=Mauran S&publication_year=2001&journal=Int J Heat Mass Transfer&volume=44&pages=2727-2737
[14]
Pincemin
S,
Olives
R,
Py
X, et al.
Highly conductive composites made of phase change materials and graphite for thermal storage.
Sol Energy Mat Sol C,
2008, 92: 603-613
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Highly conductive composites made of phase change materials and graphite for thermal storage&author=Pincemin S&author=Olives R&author=Py X&publication_year=2008&journal=Sol Energy Mat Sol C&volume=92&pages=603-613
[15]
Lafdi
K,
Mesalhy
O,
Elgafy
A.
Graphite foams infiltrated with phase change materials as alternative materials for space and terrestrial thermal energy storage applications.
Carbon,
2008, 46: 159-168
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Graphite foams infiltrated with phase change materials as alternative materials for space and terrestrial thermal energy storage applications&author=Lafdi K&author=Mesalhy O&author=Elgafy A&publication_year=2008&journal=Carbon&volume=46&pages=159-168
[16]
Pincemin
S,
Py
X,
Olives
R, et al.
Elaboration of conductive thermal storage composites made of phase change materials and graphite for solar plant.
J Sol Energy,
2007, 130: 011005
Google Scholar
http://scholar.google.com/scholar_lookup?title=Elaboration of conductive thermal storage composites made of phase change materials and graphite for solar plant&author=Pincemin S&author=Py X&author=Olives R&publication_year=2007&journal=J Sol Energy&volume=130&pages=011005
[17]
Siahpush
A,
O’Brien
J,
Crepeau
J.
Phase change heat transfer enhancement using copper porous foam.
J Heat Trans,
2008, 130: 082301
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Phase change heat transfer enhancement using copper porous foam&author=Siahpush A&author=O’Brien J&author=Crepeau J&publication_year=2008&journal=J Heat Trans&volume=130&pages=082301
[18]
Chaise
A,
de Rango
P,
Marty
P, et al.
Enhancement of hydrogen sorption in magnesium hydride using expanded natural graphite.
Int J Hydrogen Energyy,
2009, 34: 8589-8596
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Enhancement of hydrogen sorption in magnesium hydride using expanded natural graphite&author=Chaise A&author=de Rango P&author=Marty P&publication_year=2009&journal=Int J Hydrogen Energyy&volume=34&pages=8589-8596
[19]
Mellouli
S,
Dhaou
H,
Askri
F, et al.
Hydrogen storage in metal hydride tanks equipped with metal foam heat exchanger.
Int J Hydrogen Energy,
2009, 34: 9393-9401
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hydrogen storage in metal hydride tanks equipped with metal foam heat exchanger&author=Mellouli S&author=Dhaou H&author=Askri F&publication_year=2009&journal=Int J Hydrogen Energy&volume=34&pages=9393-9401
[20]
Laurencelle
F,
Goyette
J.
Simulation of heat transfer in a metal hydride reactor with aluminium foam.
Int J Hydrogen Energy,
2007, 32: 2957-2964
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Simulation of heat transfer in a metal hydride reactor with aluminium foam&author=Laurencelle F&author=Goyette J&publication_year=2007&journal=Int J Hydrogen Energy&volume=32&pages=2957-2964
[21]
Tsai
M L,
Yang
T S.
On the selection of metal foam volume fraction for hydriding time minimization of metal hydride reactors.
Int J Hydrogen Energy,
2010, 35: 11052-11063
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=On the selection of metal foam volume fraction for hydriding time minimization of metal hydride reactors&author=Tsai M L&author=Yang T S&publication_year=2010&journal=Int J Hydrogen Energy&volume=35&pages=11052-11063
[22]
Bhattacharya
A,
Calmidi
V V,
Mahajan
R L.
Thermophysical properties of high porosity metal foams.
Int J Heat Mass Transfer,
2002, 45: 1017-1031
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Thermophysical properties of high porosity metal foams&author=Bhattacharya A&author=Calmidi V V&author=Mahajan R L&publication_year=2002&journal=Int J Heat Mass Transfer&volume=45&pages=1017-1031
[23]
Boomsma
K,
Poulikakos
D,
Zwick
F.
Metal foams as compact high performance heat exchangers.
Mech Mater,
2003, 35: 1161-1176
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Metal foams as compact high performance heat exchangers&author=Boomsma K&author=Poulikakos D&author=Zwick F&publication_year=2003&journal=Mech Mater&volume=35&pages=1161-1176
[24]
Zhao
C Y,
Kim
T,
Lu
T J, et al.
Thermal transport in high porosity cellular metal foams.
J Thermophys Heat Tr,
2004, 18: 309-317
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Thermal transport in high porosity cellular metal foams&author=Zhao C Y&author=Kim T&author=Lu T J&publication_year=2004&journal=J Thermophys Heat Tr&volume=18&pages=309-317
[25]
Zhao
C Y,
Lu
T J,
Hodson
H P.
Thermal radiation in ultralight metal foams with open cells.
Int J Heat Mass Transfer,
2004, 47: 2927-2939
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Thermal radiation in ultralight metal foams with open cells&author=Zhao C Y&author=Lu T J&author=Hodson H P&publication_year=2004&journal=Int J Heat Mass Transfer&volume=47&pages=2927-2939
[26]
Zhao
C Y,
Lu
T J,
Hodson
H P.
Natural convection in metal foams with open cells.
Int J Heat Mass Transfer,
2005, 48: 2452-2463
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Natural convection in metal foams with open cells&author=Zhao C Y&author=Lu T J&author=Hodson H P&publication_year=2005&journal=Int J Heat Mass Transfer&volume=48&pages=2452-2463
[27]
Zhao
C Y,
Lu
T J,
Hodson
H P, et al.
The temperature dependence of effective thermal conductivity of open-celled steel alloy foams.
Mater Sci Eng A,
2004, 367: 123-131
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The temperature dependence of effective thermal conductivity of open-celled steel alloy foams&author=Zhao C Y&author=Lu T J&author=Hodson H P&publication_year=2004&journal=Mater Sci Eng A&volume=367&pages=123-131
[28]
Zhao
C Y,
Lu
W,
Tassou
S A.
Flow boiling heat transfer in horizontal metal-foam tubes.
J Heat Trans,
2009, 131: 121002
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Flow boiling heat transfer in horizontal metal-foam tubes&author=Zhao C Y&author=Lu W&author=Tassou S A&publication_year=2009&journal=J Heat Trans&volume=131&pages=121002
[29]
Zhao
C Y,
Tassou
S A,
Lu
T J.
Analytical considerations of thermal radiation in cellular metal foams with open cells.
Int J Heat Mass Transfer,
2008, 51: 929-940
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Analytical considerations of thermal radiation in cellular metal foams with open cells&author=Zhao C Y&author=Tassou S A&author=Lu T J&publication_year=2008&journal=Int J Heat Mass Transfer&volume=51&pages=929-940
[30]
Jemni
A,
Nasrallah
S B,
Lamloumi
J.
Experimental and theoretical study of ametal-hydrogen reactor.
Int J Hydrogen Energy,
1999, 24: 631-644
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Experimental and theoretical study of ametal-hydrogen reactor&author=Jemni A&author=Nasrallah S B&author=Lamloumi J&publication_year=1999&journal=Int J Hydrogen Energy&volume=24&pages=631-644
[31]
Nasrallah
S B,
Jemni
A.
Heat and mass transfer models in metal-hydrogen reactor.
Int J Hydrogen Energy,
1997, 22: 67-76
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Heat and mass transfer models in metal-hydrogen reactor&author=Nasrallah S B&author=Jemni A&publication_year=1997&journal=Int J Hydrogen Energy&volume=22&pages=67-76
[32]
Chaise
A,
Marty
P,
Rango
P, et al.
A simple criterion for estimating the effect of pressure gradients during hydrogen absorption in a hydride reactor.
Int J Heat Mass Transfer,
2009, 52: 4564-4572
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A simple criterion for estimating the effect of pressure gradients during hydrogen absorption in a hydride reactor&author=Chaise A&author=Marty P&author=Rango P&publication_year=2009&journal=Int J Heat Mass Transfer&volume=52&pages=4564-4572
[33]
Chaise
A,
de Rango
P,
Marty
P, et al.
Experimental and numerical study of a magnesium hydride tank.
Int J Hydrogen Energy,
2010, 35: 6311-6322
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Experimental and numerical study of a magnesium hydride tank&author=Chaise A&author=de Rango P&author=Marty P&publication_year=2010&journal=Int J Hydrogen Energy&volume=35&pages=6311-6322
[34]
Askri
F,
Jemni
A,
Ben Nasrallah
S.
Study of two-dimensional and dynamic heat and mass transfer in a metal–hydrogen reactor.
Int J Hydrogen Energy,
2003, 28: 537-557
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Study of two-dimensional and dynamic heat and mass transfer in a metal–hydrogen reactor&author=Askri F&author=Jemni A&author=Ben Nasrallah S&publication_year=2003&journal=Int J Hydrogen Energy&volume=28&pages=537-557
[35]
Boomsma
K,
Poulikakos
D.
On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam.
Int J Heat Mass Transfer,
2001, 44: 827-836
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam&author=Boomsma K&author=Poulikakos D&publication_year=2001&journal=Int J Heat Mass Transfer&volume=44&pages=827-836
[36]
Delhomme
B,
de Rango
P,
Marty
P, et al.
Large scale magnesium hydride tank coupled with an external heat source.
Int J Hydrogen Energy,
2012, 37: 9103-9111
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Large scale magnesium hydride tank coupled with an external heat source&author=Delhomme B&author=de Rango P&author=Marty P&publication_year=2012&journal=Int J Hydrogen Energy&volume=37&pages=9103-9111