Gas-side fouling, erosion and corrosion of heat exchanger for middle and low temperature flue gas waste heat recovery

logo

Chinese Science Bulletin, Volume 61, Issue 17: 1858-1876(2016) https://doi.org/10.1360/N972016-00248

Gas-side fouling, erosion and corrosion of heat exchanger for middle and low temperature flue gas waste heat recovery

More info
  • ReceivedFeb 22, 2016
  • AcceptedMar 11, 2016
  • PublishedMay 10, 2016

Abstract

With the ongoing emphasis on the efficient use of energy, much effort is put on the development and application of various heat recovery technologies. Heat exchangers play an important role in energy transfer and utilization and are widely used to recover waste energy from different kinds of heat sources in many fields such as energy and power engineering, petroleum and chemical engineering, air conditioning and refrigeration, aviation and aerospace, etc. In the heat exchangers for waste heat recovery, the gas-side fluid mediums usually are unclean and corrosive. The problems of fouling, erosion and corrosion of heat exchangers in the middle and low temperature flue gas-side caused by the high ash content, viscous and corrosive components are inevitable, and how to effectively solve the problems has been the subject of much research in recent years. In this paper, the researches of fouling, erosion and corrosion characteristics in middle and low temperature flue gas heat exchangers are reviewed. The causes and influence factors are discussed. Firstly, the fouling mechanisms of heat exchangers are introduced and the existing theoretical models, empirical models, and numerical methods of particle transport, impact and deposition are reviewed. The ash fouling characteristics of 6-row tube heat exchangers are presented and the effects of flue gas velocity, particle diameter, spanwise tube pitch, longitudinal tube pitch, tube shape and geometry conditions on fouling rate are discussed. Both decrease of the longitudinal tube spacing and increase of spanwise spacing can effectively reduce the deposition of particles. The geometry of elliptical tubes can fulfill this requirement for fouling reduction with smaller longitudinal spacing and larger spanswise pitch. The feasibility of using oval tube is explored for the fouling reduction. Compared with the circular tube arrangement, the deposition rate of the elliptical tube was decreased by 68.8%. Secondly, the existing erosion mechanisms, theories and methods are introduced. Different erosion models, including the model advantages and disadvantages are also summarized. The dynamics behaviour of the entrained solid particles in the flow and the deformation of the tube surface due to erosion are presented. The effects of particle diameter, particle mass flow rate and fluid Reynolds number are discussed. Among the three parameters, fluid Reynolds number has the most important effect on the erosion of tube surface. Erosion mainly occurs at the first part of the single tube surface. Thirdly, the existing mechanisms, theories and methods of corrosion characteristics of heat exchangers are introduced. Then a coupling numerical model, developed in author’s previous research, is discussed to predict the condensation characteristics of sulfuric acid vapor on heat exchanger surfaces. The corrosion risk can be reduced by decreasing the water vapor concentration and increasing the flue gas temperature. The effects of operating parameters and geometry conditions on the sulfuric acid condensation and corrosion characteristics are also discussed. A correlation of Sh number of sulfuric acid versus fin geometries for a 10-row tube bundle is provided. In order to reveal the anti-corrosion characteristics of different materials and the coupling mechanisms between the fouling and dewpoint corrosion, the online water-cooled test system and laboratory static sample test system on the corrosion characteristics of heat exchangers are introduced. Some dewpoint corrosion resistant steels are presented. The mechanism of dewpoint corrosion is revealed, the relationship between the thickness of corrosion layer and wall temperature is discussed and the coupling mechanisms between the fouling and dewpoint corrosion are also discussed. The corrosion products are composed of the ash and acid reaction products in the outer layer, iron sulfate in the middle layer, and iron oxide in the inner layer. The innermost layer is the main corrosion layer. Finally, the research needs and prospect of fouling, erosion and corrosion research are discussed. Hope to solve the problems of designing the anti-fouling, anti-erosion and anti-corrosion heat exchangers, and promote the development of efficient utilization technologies in middle and low temperature flue gas heat exchangers.


Funded by

国家重点基础研究发展计划(2013CB228304)


References

[1] 韩 辉. 气体换热器强化换热及腐蚀积灰特性的数值模拟与实验研究. 博士学位论文. 西安: 西安交通大学. 2014, Google Scholar

[2] 岑 可法, 樊 建人, 池 作和, et al. 锅炉和热交换器的积灰、结渣、磨损和腐蚀的防止原理与计算. 北京: 科学出版社. 1994, Google Scholar

[3] Holman J P. Heat Transfer. 10th ed. New York: McGraw-Hill. 2010, Google Scholar

[4] Marner W J, Suitor J W. A survey of gas side fouling in industrial heat transfer equipment: Final report. JPL Publication 83-74. Pasadena CA: Jet Propulsion Laboratory Institute of Technology. 1983, Google Scholar

[5] Weber R, Mancini M, Schaffel-Mancini N, et al. On predicting the ash behaviour using computational fluid dynamics. Fuel Proc Technol, 2013, 105: 113-128 CrossRef Google Scholar

[6] Baxter L L. Ash deposition during biomass and coal combustion: A mechanisitc approach. Biomass Bioenergy, 1993, 4: 85-102 CrossRef Google Scholar

[7] Naruse I, Kamihashira D, Khairil , et al. Fundamental ash deposition characteristics in pulverized coal reaction under high temperature conditions. Fuel, 2005, 84: 405-410 CrossRef Google Scholar

[8] 徐 晓光. 生物质燃烧过程积灰形成机理的实验研究. 博士学位论文. 北京: 清华大学. 2009, Google Scholar

[9] Wang Y, Hu C, Hui S, et al. Deposition of cement kiln ash on the tubes of waste heat recovery boiler. Power and Energy Engineering Conference (APPEEC), 2011 Asia-Pacific. IEEE, 2011. 1–4. Google Scholar

[10] Wac?awiak K, Kalisz S. A practical numerical approach for prediction of particulate fouling in PC boilers. Fuel, 2012, 97: 38-48 CrossRef Google Scholar

[11] Rogers L N, Reed J. The adhesion of particles undergoing an elastic-plastic impact with a surface. J Phys D: Appl Phys, 1984, 17: 677-689 CrossRef Google Scholar

[12] Brach R M, Dunn P F, Li X. Experiments and engineering models of microparticle impact and deposition. J Adhes, 2000, 74: 227-282 CrossRef Google Scholar

[13] Thornton C, Ning Z. A theoretical model for the stick/bounce behaviour of adhesive, elastic-plastic spheres. Powder Technol, 1998, 99: 154-162 CrossRef Google Scholar

[14] Konstandopoulos A G. Particle sticking/rebound criteria at oblique impact. J Aerosol Sci, 2006, 37: 292-305 CrossRef Google Scholar

[15] Han H, He Y L, Tao W Q, et al. A parameter study of tube bundle heat exchangers for fouling rate reduction. Int J Heat Mass Transfer, 2014, 72: 210-221 CrossRef Google Scholar

[16] Li X, Zhou H, Cen K. Influences of various vortex structures on the dispersion and deposition of small ash particles. Fuel, 2008, 87: 1379-1382 CrossRef Google Scholar

[17] Fan J R, Zha X D, Sun P, et al. Simulation of ash deposit in a pulverized coal-fired boiler. Fuel, 2001, 80: 645-654 CrossRef Google Scholar

[18] Bouris D, Konstantinidis E, Balabani S, et al. Design of a novel, intensified heat exchanger for reduced fouling rates. Int J Heat Mass Transfer, 2005, 48: 3817-3832 CrossRef Google Scholar

[19] Bouris D, Papadakis G, Bergeles G. Numerical evaluation of alternate tube configurations for particle deposition rate reduction in heat exchanger tube bundles. Int J Heat Fluid Flow, 2001, 22: 525-536 CrossRef Google Scholar

[20] Paz C, Suárez E, Eirís A, et al. Development of a predictive CFD fouling model for diesel engine exhaust gas systems. Heat Transfer Eng, 2013, 34: 674-682 CrossRef Google Scholar

[21] Han H, He Y L, Li Y S, et al. A numerical study on compact enhanced fin-and-tube heat exchangers with oval and circular tube configurations. Int J Heat Mass Transfer, 2013, 65: 686-695 CrossRef Google Scholar

[22] Patel R D, Patel I J. A review paper on erosion and corrosion behavior of coal combustion chamber. Int J Innov Res Sci Technol, 2015, 1: 72-76 Google Scholar

[23] Lee B E, Fletcher C A J, Behnia M. Computational study of solid particle erosion for a single tube in cross flow. Wear, 2000, 240: 95-99 CrossRef Google Scholar

[24] Bahadur S, Badruddin R. Erodent particle characterization and the effect of particle size and shape on erosion. Wear, 1990, 138: 189-208 CrossRef Google Scholar

[25] 樊 建人, 周 大冬, 岑 可法. 煤灰粒子冲击管束的碰撞和磨损研究. 工程热物理学报, 1989, 10: 452-455 Google Scholar

[26] Humphrey J A C. Fundamentals of fluid motion in erosion by solid particle impact. Int J Heat Fluid Flow, 1990, 11: 170-195 CrossRef Google Scholar

[27] Finnie I. Erosion of surfaces by solid particles. Wear, 1960, 3: 87-103 CrossRef Google Scholar

[28] Hashish M. A modeling study of metal cutting with abrasive waterjets. J Eng Mater Technol, 1984, 106: 88-100 CrossRef Google Scholar

[29] Mbabazi J G, Sheer T J, Shandu R. A model to predict erosion on mild steel surfaces impacted by boiler fly ash particles. Wear, 2004, 257: 612-624 CrossRef Google Scholar

[30] Tabakoff W, Kotwal R, Hamed A. Erosion study of different materials affected by coal ash particles. Wear, 1979, 52: 161-173 CrossRef Google Scholar

[31] McLaury B S. A model to predict solid particle erosion in oilfield geometries. Thesis for Master Degree. Tulsa: University of Tulsa. 1993, Google Scholar

[32] Oka Y I, Okamura K, Yoshida T. Practical estimation of erosion damage caused by solid particle impact: Part 1: Effects of impact pa-rameters on a predictive equation. Wear, 2005, 259: 95-101 CrossRef Google Scholar

[33] Oka Y I, Yoshida T. Practical estimation of erosion damage caused by solid particle impact: Part 2: mechanical properties of materials directly associated with erosion damage. Wear, 2005, 259: 102-109 CrossRef Google Scholar

[34] Lee B E, Tu J Y, Fletcher C A J. On numerical modeling of particle-wall impaction in relation to erosion prediction: Eulerian versus Lagrangian method. Wear, 2002, 252: 179-188 CrossRef Google Scholar

[35] Yao J, Zhang B, Fan J. An experimental investigation of a new method for protecting bends from erosion in gas-particle flows. Wear, 2000, 240: 215-222 CrossRef Google Scholar

[36] Fan J, Yao J, Zhang X, et al. Experimental and numerical investigation of a new method for protecting bends from erosion in gas-particle flows. Wear, 2001, 251: 853-860 CrossRef Google Scholar

[37] Jin Y, Dan D, Tang G H, et al. Numerical study of the solid particle erosion on a single row tube surface. The 4th Asian Symposium on Computational Heat Transfer and Fluid Flow, Hong Kong, 2013. Google Scholar

[38] Fan J, Sun P, Zheng Y, et al. A numerical study of a protection technique against tube erosion. Wear, 1999, 225: 458-464 Google Scholar

[39] 王 迎慧, 孙 宁, 归 柯庭. 烟气横掠螺旋槽管束磨损特性的数值模拟. 东南大学学报: 自然科学版, 2014, 44: 585-590 Google Scholar

[40] Schade K P, Erdmann H J, H?drich T, et al. Experimental and numerical investigation of particle erosion caused by pulverised fuel in channels and pipework of coal-fired power plant. Powder Technol, 2002, 125: 242-250 CrossRef Google Scholar

[41] Lin Z H, Xu T M. Practical Boiler Handbook (in Chinese). Beijing: Chemical Industry Press, 2009 [林宗虎, 徐通模. 实用锅炉手册. 化学工业出版社, 2009]. Google Scholar

[42] Wang Y, He Y L, Li R, et al. Heat transfer and friction characteristics for turbulent flow of dimpled tubes. Chem Eng Technol, 2009, 32: 956-963 CrossRef Google Scholar

[43] Wang Y, He Y L, Lei Y G, et al. Heat transfer and hydrodynamics analysis of a novel dimpled tube. Exp Thermal Fluid Sci, 2010, 34: 1273-1281 CrossRef Google Scholar

[44] 唐 志永. 湿法脱硫后燃煤电站尾部装置腐蚀研究. 博士学位论文. 南京: 东南大学. 2006, Google Scholar

[45] 岑 可法. 锅炉燃烧试验研究方法及测量技术. 北京: 水利水电出版社. 1987, Google Scholar

[46] Holmes D R. Dewpoint Corrosion. Birmingham: Horwood Publishing Limited. 1985, Google Scholar

[47] Abel E. The vapor phase above the system sulfuric acid-water. J Phys Chem, 1946, 50: 260-282 CrossRef Google Scholar

[48] Gmitro J I, Vermeulen T. Vapor-liquid equilibria for aqueous sulfuric acid. AIChE J, 1964, 10: 740-746 CrossRef Google Scholar

[49] Wilson R W, Stein F P. Correlation of sulfuric acid-water partial pressures. Fluid Phase Equilibr, 1989, 53: 279-288 CrossRef Google Scholar

[50] Pessoa F L P, Siqueira Campos C E P, Uller A M C. Calculation of vapor-liquid equilibria in aqueous sulfuric acid solutions using the UNIQUAC equation in the whole concentration range. Chem Eng Sci, 2006, 61: 5170-5175 CrossRef Google Scholar

[51] Levy E K, Wilson R W. A method for calculating acid deposition rates in regenerative air preheaters. Nat Heat Transfer Equipm Fund Design Appl Oper Probl, 1989, 108: 289-296 Google Scholar

[52] Han H, He Y L, Tao W Q. A numerical study of the deposition characteristics of sulfuric acid vapor on heat exchanger surfaces. Chem Eng Sci, 2013, 101: 620-630 CrossRef Google Scholar

[53] Vorgelegt V. Condensation of Water Vapor and Acid Mixtures from Exhaust Gases. Berlin: Technical University of Berlin. 2004, Google Scholar

[54] Comini G, Nonino C, Savino S. Numerical evaluation of fin performance under dehumidifying conditions. J Heat Transfer-Trans ASME, 2007, 129: 1395-1402 CrossRef Google Scholar

[55] 金 保升, 唐 志永, 孙 克勤, et al. 燃煤电站烟囱中硫酸冷凝沉积速度的数值预测. 中国电机工程学报, 2006, 26: 40-44 Google Scholar

[56] He Y L, Han H, Tang S Z, et al. Sulfuric acid deposition characteristics of H-type finned tube bank with 10 rows. Int J Heat Mass. Google Scholar

[57] Transfer, 2015, 81: 137–141. Google Scholar

[58] Damon G H. Acid corrosion of steel. Industr Eng Chem, 1941, 33: 67-69 CrossRef Google Scholar

[59] Kivis?kk U. A test method for dewpoint corrosion of stainless steels in dilute hydrochloric acid. Corros Sci, 2003, 45: 485-495 CrossRef Google Scholar

[60] 顾 国亮, 杨 文忠. ND 钢, 316L, 20# 碳钢在硫酸介质中的腐蚀行为. 腐蚀与防护, 2005, 26: 336-337 Google Scholar

[61] 赵 钦新, 张 知翔, 杜 文智, et al. 模拟气氛下硫酸露点的腐蚀试验研究. 动力工程学报, 2012, 32: 420-424 Google Scholar

[62] 梁 志远, 赵 钦新, 张 智超, et al. 表面渗层和 CrNiMo 涂层材料的露点腐蚀. 中国表面工程, 2012, 25: 56-61 Google Scholar

[63] 张 知翔, 张 智超, 曳 前进, et al. 燃煤锅炉露点腐蚀实验研究. 材料工程, 2012, 2: 19-23 Google Scholar

[64] Heitmuller R J, Fischer H, Sigg J, et al. Lignite-fired Niederaussem K aims for efficiency of 45 percent and more. Mod Power Syst, 1999, 19: 53-66 Google Scholar

[65] Wang Y G, Zhao Q X, Zhang Z X, et al. Mechanism research on coupling effect between dew point corrosion and ash deposition. Appl Thermal Eng, 2013, 54: 102-110 CrossRef Google Scholar

  • 图1

    煤燃烧过程中积灰形成示意图[5]

  • 图2

    (网络版彩色)顺排布置圆管圆周的沉积率分布[15]. u=5 m/s, dp=5 mm

  • 图3

    (网络版彩色)不同参数对换热性能和沉积率的影响[15]. (a), (b) 颗粒直径和流速对沉积率的影响; (c), (d) 纵向节距对换热阻力性能和沉积率的影响; (e), (f) 横向节距对换热阻力性能和沉积率的影响

  • 图4

    (网络版彩色)顺排椭圆管圆周的沉积率分布[15]. u=5 m/s, dp=5 mm

  • 图5

    (网络版彩色)不同管型和管排布置的涡量和颗粒场分布图[15]. (a) 圆管顺排; (b) 圆管错排; (c) 椭圆管顺排; (d) 椭圆管错排. u=5 m/s, dp=5 mm

  • 图6

    (网络版彩色)管型及布置形式对沉积率的影响[15]. u=5 m/s, dp=5 mm

  • 图7

    不同尺寸颗粒的碰撞轨迹[37]. (a) dp=0.01 mm; (b) dp=0.03 mm; (c) dp=0.05 mm; (d) dp=0.08 mm; (e) dp=0.1 mm

  • 图8

    (网络版彩色)管壁磨损深度圆周分布[37]. (a) 不同颗粒直径; (b) 不同颗粒流量; (c) 不同雷诺数

  • 图9

    不同时刻管壁边界变化图[37]. dp=30 mm, Re=11174

  • 图10

    雷诺数对最大磨损深度的影响[37]. dp=30 mm, qm=0.004 kg/s

  • 图11

    (网络版彩色)腐蚀速率随壁温变化的曲线[1,46]

  • 图12

    (网络版彩色)翅片表面温度、硫酸质量分数、酸分压及酸凝结率在翅片表面的分布图[52]. (a) 翅片温度; (b) 硫酸质量分数; (c) 酸分压; (d) 凝结率

  • 图13

    (网络版彩色)不同参数对酸凝结率和酸液质量分数的影响[52]. (a) 流速; (b), (c) 酸组分含量; (d), (e) 烟气温度; (f), (g) 水组分含量

  • 图14

    (网络版彩色)10排H型翅片管换热器示意图[56]

  • 图15

    (网络版彩色)Re数和翅片厚度对酸沉积率和冷凝硫酸质量分数的影响[56]. (a) Re数; (b) 翅片厚度

  • 图16

    (网络版彩色)管型和布置方式的影响. (a) 酸凝结速率; (b) 冷凝的酸液浓度

  • 图17

    (网络版彩色)实验室挂片实验装置示意图[60]

  • 图18

    (网络版彩色)真实烟气水冷低温腐蚀实验装置示意图[61]

  • 图19

    (网络版彩色)不同材料模拟气氛下腐蚀层厚度对比图[60]

  • 图20

    (网络版彩色)不同钢材真实烟气中腐蚀层厚度对比图[62]

  • 图21

    (网络版彩色)积灰与酸耦合机理示意图[64]

  • 表1   磨损模型对比

    文献

    数学模型及主要参数

    模型介绍

    优缺点

    Finnie[27]

    V= Km v2pf(α) f(α )={ sin2 α?3 sin2α,?α18.5°cos2α /3, ????????????? α>18.5 °

    该模型是很早根据磨损的实验现象和各种结果描述磨损微切削机理的模型. 模型假设颗粒在切削金属的过程中不发生碎裂, 认为固体颗粒对韧性材料的磨损主要源自颗粒对材料的犁削作用

    此磨损模型对于韧性材料在冲击角度是小角度(α<45° )时, 与实验结果吻合较好, 但当冲击角度较大时, 该模型与实验偏差较大, 尤其 α=90°时, 该模型的磨损量为0

    Hashish[28]

    W =7πm ρp ( vC )2.5 sin(2 α)sinα C= 3σt Rf 3/5 ρ p

    该模型对Finnie模型进行了修改, 改进了其中的速度指数并加入了粒子形状的影响

    该模型中不需要实验常数, 所以使用较方便. 然而该模型主要基于韧性材料, 因而主要适用于韧性材料低冲击角的磨损情况

    Mbabazi等人[29]

    E= 0.47z4.95ρ mρ p1/2V3 sin3 β σy3 /2

    该模型综合考虑了颗粒和金属表面的性质、颗粒的运动特性

    该模型计算简便, 但主要适用于特定材料(低碳钢)

    Tabakoff等人[30]

    E= K1 {1 +CK [K2sin (90β 0 β1)] }2 +Vi 2cos 2β1(1? R12 ) +K 3( Visinβ1 )4

    该模型是通过对煤灰颗粒磨损金属材料进行了大量的实验研究, 回归总结出煤灰碰撞管壁磨损率的计算公式

    此模型已被Schade等人[40]用于预测燃煤电站锅炉磨损速率, 与实验结果十分吻合. 但含碳量不同时机械性能差别较大. 此模型反应不出碳钢含碳量不同时磨损量的差异

    The Erosion/Corrosion Research Center (E/ CRC)[31]

    ER =C(BH)? 0.59F sVpnF(θ) F(θ)= i =15 Ai θi

    该模型源于实验数据, 主要针对碳钢和铝材料. 该模型引入了包含目标材料的机械特性的变量-布氏硬度

    此模型是在高速撞击条件下获得的, 对于低速撞击的工况不具有普遍适用性. 且没有明确考虑颗粒大小的影响

    Oka等人[32,33]

    E( α)=g(α) E90 g (α)=(sinα)n1(1+Hv (1?sinα)) n2 E 90= K(Hv)k1 [ vv ] k2 [dd ] k3

    该模型以大量的磨损实验为基础, 综合考虑颗粒的碰撞速度、碰撞角度、目标材料的硬度、颗粒粒径和几种颗粒类型等主要影响因素

    适用于任何材料, 任意撞击角度和撞击速度. 但没有明确考虑颗粒的形状

    Lee等人[34]

    E= j =12 Kj Cp jf(βj)V nj g( dp) h(Th)ω j

    该模型从撞击速度、粒子尺寸、粒子形状、粒子的力学特性、飞灰浓度、被撞击材料的温度和省煤器结构等方面进行考虑

    该模型包含有重要的磨损参数, 但磨损常数的确定需要进行大量的试验获得

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1