科学合理的制造工程管理对于提升我国制造业的整体竞争力、建设制造强国具有十分重要的作用。近十多年来,本研究团队立足于制造工程管理实践,较系统地研究了制造工程管理中的优化理论与方法,取得了一些研究成果和应用成效。
本书是根据研究团队在制造工程管理优化理论与方法方面的研究成果整理而成的,主要从生产批量与定价联合优化、生产调度优化、机器调度优化、库存控制优化、物流路径优化和供应链协调与优化六个方面来展开。在生产批量与定价联合优化方面,针对制造工程管理实际中的允许供货延迟、库存能力受限、生产能力受限以及多目标市场等情形,较深入地研究了制造型企业的批量和定价联合优化问题,分别建立了允许供货延迟情形的定价与批量联合决策的动态规划模型、动态定价与非减库存能力受限批量集成优化的非线性混合整数规划模型、动态定价与生产能力受限批量集成优化的非线性混合整数规划模型、多产品允许延迟供货且能力受限的批量与动态定价联合决策问题的二次规划模型、多目标市场下定价与批量联合决策问题的二次规划模型等,并提出了相应的优化求解算法。在生产与机器调度优化方面,针对释放时间受能耗约束、加工时间受能耗约束、释放时间与加工时间同时受能耗约束三类平行机环境,较深入地研究了高耗能制造企业的生产调度与能耗控制问题,建立了优化决策模型,基于最优解的特征并结合模拟退火或可变领域搜索等亚启发式算法提出了解决生产调度与能耗控制问题的优化方法;针对机器调度问题,提出了维护时段可调、加工时间可变的带预防性维护的机器调度优化方法等。在库存控制优化方面,着重研究了连续性生产策略下制造企业的最优生产库存计划问题,提出了制造企业寻求最优生产控制策略的决策方法;揭示了资金时值变化、信用支付策略以及产品性态等对制造企业最优订货或者生产策略的影响。在物流路径优化方面,针对企业内部物流配送,研究了带时间窗约束的物流路径优化问题及其主要衍生问题,如带多时间窗约束的物流路径优化问题、速度时变的物流路径优化问题,为制造企业内部的物流运输优化提供了解决方法。在供应链协调与优化方面,针对制造商生产的弹性和销售商订购的灵活性,提出了多种生产和订购模式下供应链运作决策的协调机制与方法等。最后,本书以国内多家大型联合企业为背景,针对该企业生产周期长、占用资金高与高能耗的特点,研究了原料采购优化、考虑节能降耗的生产过程优化、考虑定期维护的大型设备调度优化、企业内部的物流运输优化以及产成品库存的优化控制等优化问题,为制造工程管理优化理论的应用提供了案例。
进入21世纪,制造型企业经营的市场环境和技术环境都发生了巨大变化,这些变化不仅给制造型企业的发展提供了新的机遇,也给制造工程管理带来了许多新的问题和挑战。在市场环境方面,首先,伴随着生活水平的提高,市场需求越来越个性化和多样化而且变化莫测;其次,经济全球化使得制造型企业在地理上的分布范围更广,导致企业的许多流程可以跨地区、跨部门分布式并行实施,使得企业的协同运作更加复杂和困难。为了能有效、快速地响应瞬息万变的市场,制造型企业不仅要具备组织和技术上的柔性以及制造过程管理上的柔性,还要使得整个供应链系统具有更强的敏捷性。这些市场环境的变化给制造型企业的运营带来了巨大压力和挑战,也给制造工程管理的理论方法研究提供了许多新的具有挑战性的研究课题。在技术环境方面,近几年来,高速发展的物联网和云计算技术对制造工程也产生了极其深刻的影响。一方面,物联网以射频识别、红外感应、全球定位、激光扫描等信息传感技术和标准、兼容的通信协议技术为基础,把各类物品与互联网连接起来,使物理空间和信息空间融为一体,实现了物与物、物与人、人与现实环境之间的高效交互。它使得制造企业不仅可以在制造过程中通过物联网对制造过程进行实时控制和管理,也可以在产品中嵌入数据采集、信息处理和互联网连接等功能,使产品成为信息网络的智能终端设备,直接融入物联网。另一方面,云计算为制造型企业提供了一种全新的商业服务模式和服务支撑平台,使得制造型企业可以利用云计算技术将各类制造资源和制造能力虚拟化,并对虚拟的制造资源和制造能力进行智能化管理,实现制造资源和制造能力的高效共享和协同,最终实现多方共赢。这些技术环境的变化必然会导致制造模式发生重大变革,进而也给制造工程管理的优化理论与方法带来更多、更新的研究课题。这些新的问题主要有:
(1)不确定性动态环境下的优化问题。随着市场竞争的加剧,以顾客为中心的制造型企业需要有更强的市场应变和响应能力,这就要求制造型企业的各个环节的运作决策具有相应的柔性和敏捷性。然而,不确定性且动态变化的市场环境,使得制造型企业的经营管理异常复杂。首先,快速多变的市场需求给确定制造型企业的柔性生产计划带来越来越多的困难和挑战;其次,市场需求日趋个性化与多样化,使得制造型企业多品种、小批量的生产调度问题变得愈来愈复杂;再次,经济全球化的趋势下,分布性更强、并行化和集成化程度更高的特征,使得制造企业内外部环节间的物料采购与动态及时配送问题更加复杂,更有挑战性;最后,随着全球气候和环境变化,绿色制造已成为趋势,使得节能减排正成为影响我国制造业发展的突出制约因素,给制造业经营管理带来了巨大的挑战。因此,在不确定性动态市场环境下,制造工程管理中的生产计划与调度优化、物料采购与配送优化以及各生产子系统运营决策的协同优化等是今后亟待解决的重要问题。
(2)供应链中企业间的运作动态协调机制问题。21世纪的市场环境需要企业具有更强的柔性,而制造型企业的柔性取决于其所在供应链的敏捷性。供应链的敏捷性则需要企业间的合作和协调机制来保障,特别是柔性制造环境下的敏捷供应链。在现实中,供应链中的企业往往会从自身利益出发,制定合作策略,由于各成员间信息的不对称,难以实现全局最优的目标,因此,如何制定成员间的协调机制是实现敏捷供应链需要解决的关键问题。
(3)利益分配机制问题。制造型企业的快速响应能力或柔性需要各功能环节或供应链企业间的合作与协同,合作伙伴间合理的利益分配机制有助于制造型企业及其供应链运营过程的稳定,只有采取公平合理的利益分配方案才能确保各环节或各企业间运作的高效顺利衔接和对市场机遇的快速响应。但由于与供应链成员利益分配相关的直接或间接因素十分复杂,如企业直接投入的资源、间接运用的资源,在供应链系统的角色、地位和所发挥的功能与作用以及对整个系统产出的贡献等众多因素都难以量化计算,因此,利益分配机制与方法设计问题是制造系统及其供应链运营关系中矛盾最突出的问题。
(4)异构资源的优化配置问题。制造型企业及其供应链系统存在多种异构资源,如何有效地利用这些资源,来支持各功能环节或企业之间的协同运作,对于提升制造型企业的柔性至关重要,因此,多种异构资源的优化配置问题以及跨企业间的生产计划调度和资源控制问题等,也是制造工程管理有待研究的关键问题。
(5)物联网环境下制造过程优化与实时控制问题。在物联网环境下,制造企业通过在产品中嵌入数据采集、信息处理和互联网连接等功能,把各种产品与互联网连接起来,实现物与物、物与人、人与现实环境之间的高效交互。这就给企业的制造过程管理提出了更高的要求,它不仅要求有相应的高效优化流程、信息的高效集成与交互,还要求有高效的资源适时调度和管理,因此物联网环境下制造过程的实时控制和优化管理问题,是今后值得关注的重要问题之一。
(6)云制造模式下制造资源与能力的交易机制问题。由云计算技术与制造工程相互融合形成的基于云计算的制造服务系统(云制造)是制造工程的发展方向之一。云制造是一类新型制造服务模式,它利用云计算技术将各类制造资源和制造能力虚拟化,并对虚拟的制造资源和制造能力进行智能化配置管理,为制造型企业提供质优价廉的制造论证、产品设计、生产加工、仿真试验、经营管理等制造全生命周期服务,使制造资源和制造能力在各制造企业间实现高效共享和协同。因此,制造资源和能力的交易机制问2017-9-29题,就成为云制造模式下制造工程管理中迫切需要解决的关键问题之一。
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[2]
[2]
[2]
[2]
[2]
[2]
[2]
[2]
[2]
[3]
[3]
[3]
[3]
[3]
[3]
[3]
[3]
[3]
[4]
[4]
[4]
[4]
[4]
[4]
[4]
[4]
[4]
[5]
[5]
[5]
[5]
[5]
[5]
[5]
[5]
[5]
[6]
[6]
[6]
[6]
[6]
[6]
[6]
[6]
[6]
[7]
[7]
[7]
[7]
[7]
[7]
[7]
[7]
[7]
[8]
[8]
[8]
[8]
[8]
[8]
[8]
[8]
[8]
[9]
[9]
[9]
[9]
[9]
[9]
[9]
[9]
[9]
[10]
[10]
[10]
[10]
[10]
[10]
[10]
[10]
[10]
[11]
[11]
[11]
[11]
[11]
[11]
[11]
[11]
[11]
[12]
[12]
[12]
[12]
[12]
[12]
[12]
[12]
[12]
[13]
[13]
[13]
[13]
[13]
[13]
[13]
[13]
[13]
[14]
[14]
[14]
[14]
[14]
[14]
[14]
[14]
[14]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[16]
[16]
[16]
[16]
[16]
[16]
[16]
[16]
[16]
[17]
[17]
[17]
[17]
[17]
[17]
[17]
[17]
[17]
[18]
[18]
[18]
[18]
[18]
[18]
[18]
[18]
[18]
[19]
[19]
[19]
[19]
[19]
[19]
[19]
[19]
[19]
[20]
[20]
[20]
[20]
[20]
[20]
[20]
[20]
[20]
[21]
[21]
[21]
[21]
[21]
[21]
[21]
[21]
[21]
[22]
[22]
[22]
[22]
[22]
[22]
[22]
[22]
[22]
[23]
[23]
[23]
[23]
[23]
[23]
[23]
[23]
[23]
[24]
[24]
[24]
[24]
[24]
[24]
[24]
[24]
[24]
[25]
[25]
[25]
[25]
[25]
[25]
[25]
[25]
[25]
[26]
[26]
[26]
[26]
[26]
[26]
[26]
[26]
[26]
[27]
[27]
[27]
[27]
[27]
[27]
[27]
[27]
[27]
[28]
[28]
[28]
[28]
[28]
[28]
[28]
[28]
[28]
[29]
[29]
[29]
[29]
[29]
[29]
[29]
[29]
[29]
[30]
[30]
[30]
[30]
[30]
[30]
[30]
[30]
[30]
[31]
[31]
[31]
[31]
[31]
[31]
[31]
[31]
[31]
[32]
[32]
[32]
[32]
[32]
[32]
[32]
[32]
[32]
[33]
[33]
[33]
[33]
[33]
[33]
[33]
[33]
[33]
[34]
[34]
[34]
[34]
[34]
[34]
[34]
[34]
[34]
[35]
[35]
[35]
[35]
[35]
[35]
[35]
[35]
[35]
[36]
[36]
[36]
[36]
[36]
[36]
[36]
[36]
[37]
[37]
[37]
[37]
[37]
[37]
[37]
[37]
[38]
[38]
[38]
[38]
[38]
[38]
[38]
[38]
[39]
[39]
[39]
[39]
[39]
[39]
[39]
[39]
[40]
[40]
[40]
[40]
[40]
[40]
[40]
[40]
[41]
[41]
[41]
[41]
[41]
[41]
[41] ,?elik C. Two meta-heuristics for parallel machine scheduling with job splitting to minimize total tardi ness[J]. Applied Mathematical Modelling,2011,35:4117~4126.
" class="fullContentFlag"/>
[41]
[42]
[42]
[42]
[42]
[42]
[42]
[42]
[42]
[43]
[43]
[43]
[43]
[43]
[43]
[43]
[43]
[44]
[44]
[44]
[44]
[44]
[44]
[44]
[44]
[45]
[45]
[45]
[45]
[45]
[45]
[45]
[45]
[46]
[46]
[46]
[46]
[46]
[46]
[46]
[46]
[47]
[47]
[47]
[47]
[47]
[47]
[47]
[47]
[48]
[48]
[48]
[48]
[48]
[48]
[48]
[48]
[49]
[49]
[49]
[49]
[49]
[49]
[49]
[49]
[50]
[50]
[50]
" class="fullContentFlag"/>
[50]
[50]
[50]
[50]
[50]
[51]
[51]
[51]
[51]
[51]
[51]
[51]
[51]
[52]
[52]
[52]
[52]
[52]
[52]
[52]
[52]
[53]
[53]
[53]
[53]
[53]
[53]
[53]
[53]
[54]
[54]
[54]
[54]
[54]
[54]
[54]
[54]
[55]
[55]
[55]
[55]
[55]
[55]
[55]
[55]
[56]
[56]
[56]
[56]
[56]
[56]
[56]
[56]
[57]
[57]
[57]
[57]
[57]
[57]
[57]
[57]
[58]
[58]
[58]
[58]
[58]
[58]
[58]
[58]
[59]
[59]
[59]
[59]
[59]
[59]
[59]
[59]
[60]
[60]
[60]
[60]
[60]
[60]
[60]
[60]
[61]
[61]
[61]
[61]
[61]
[61]
[61]
[61]
[62]
[62]
[62]
[62]
[62]
[62]
[62]
[62]
[63]
[63]
[63]
[63]
[63]
" class="fullContentFlag"/>
[63]
[63]
[63]
[64]
[64]
[64]
[64]
[64]
[64]
[64]
[64]
[65]
[65]
[65]
[65]
[65]
[65]
[65]
[65]
[66]
[66]
[66]
[66]
[66]
[66]
[66]
[66]
[67]
[67]
[67]
[67]
[67]
[67]
[67]
[67]
[68]
[68]
[68]
[68]
[68]
[68]
[68]
[68]
[69]
[69]
[69]
[69]
[69]
[69]
[69]
[69]
[70]
[70]
[70]
[70]
[70]
[70]
[70]
[70]
[71]
[71]
[71]
[71]
[71]
[71]
[71]
[71]
[72]
[72]
[72]
[72]
[72]
[72]
[72]
[72]
[73]
[73]
[73]
[73]
[73]
[73]
[73]
[73]
[74]
[74]
[74]
[74]
[74]
[74]
[74]
[74]
[75]
[75]
[75]
[75]
[75]
[75]
[75]
[75]
[76]
[76]
[76]
[76]
[76]
[76]
[76]
[76]
[77]
[77]
[77]
[77]
[77]
[77]
[77]
[77]
[78]
[78]
[78]
[78]
[78]
[78]
[78]
[78]
[79]
[79]
[79]
[79]
[79]
[79]
[79]
[79]
[80]
[80]
[80]
[80]
[80]
[80]
[80]
[80]
[81]
[81]
[81]
[81]
[81]
[81]
[81]
[81]
[82]
[82]
[82]
[82]
[82]
[82]
[82]
[82]
[83]
[83]
[83]
[83]
[83]
[83]
[83]
[83]
[84]
[84]
[84]
[84]
[84]
[84]
[84]
[84]
[85]
[85]
[85]
[85]
[85]
[85]
[85]
" class="fullContentFlag"/>
[85]
[86]
[86]
[86]
[86]
[86]
[86]
[86]
[86]
[87]
[87]
[87]
[87]
[87]
[87]
[87]
[88]
[88]
[88]
[88]
[88]
[88]
[88]
[89]
[89]
[89]
[89]
[89]
[89]
[89]
[90]
[90]
[90]
[90]
[90]
[90]
[90]
[91]
[91]
[91]
[91]
[91]
[91]
[91]
[92]
[92]
[92]
[92]
[92]
[92]
[92]
[93]
[93]
[93]
[93]
[93]
[93]
[93]
[94]
[94]
[94]
[94]
[94]
[94]
[94]
[95]
[95]
[95]
[95]
[95]
[95]
[95]
[96]
[96]
[96]
[96]
[96]
[96]
[96]
[97]
[97]
[97]
[97]
[97]
[97]
[97]
[98]
[98]
[98]
[98]
[98]
[98]
[98]
[99]
[99]
[99]
[99]
[99]
[99]
[99]
[100]
[100]
[100]
[100]
[100]
[100]
[100]
[101]
[101]
[101]
[101]
[101]
[101]
[101]
[102]
[102]
[102]
[102]
[102]
[102]
[102]
[103]
[103]
[103]
[103]
[103]
[103]
[103]
[104]
[104]
[104]
[104]
[104]
[104]
[104]
[105]
[105]
[105]
[105]
[105]
[105]
[105]
[106]
[106]
[106]
[106]
[106]
[106]
[106]
[107]
[107]
[107]
[107]
[107]
[107]
[107]
[108]
[108]
[108]
[108]
[108]
[108]
[108]
[109]
[109]
[109]
[109]
[109]
[109]
[109]
[110]
[110]
[110]
[110]
[110]
[110] ,Drozdowski M,Formanowicz P,et al. Scheduling preemptable tasks on parallel processors with limited availability[J]. Parallel Computing,2000,26:1195~1211.
" class="fullContentFlag"/>
[111]
[111]
[111]
[111]
[111]
[111]
[112]
[112]
[112]
[112]
[112]
[112]
[113]
[113]
[113]
[113]
[113]
[113]
[114]
[114]
[114]
[114]
[114]
[114]
[115]
[115]
[115]
[115]
[115]
[115]
" class="fullContentFlag"/>
[116]
[116]
[116]
[116]
[116]
[116]
[117]
[117]
[117]
[117]
[117]
[117]
[118]
[118]
[118]
[118]
[118]
[119]
[119]
[119]
[119]
[120]
[120]
[120]
[120]
[121]
[121]
[121]
[121]
[122]
[122]
[122]
[122]
[123]
[123]
[123]
[123]
[124]
[124]
[124]
[125]
[125]
[126]
[126]
[127]
[127]
[128]
[128]
[129]
[129]
[130]
[130]
[131]
[131]
[132]
[132]
[133]
[133]
[134]
[134]
[135]
[135]
[136]
[136]
[137]
[137]
[138]
[138]
[139]
[139]
[140]
[140]
[141]
[141]
[142]
[142]
[143]
[143]
[144]
[144]
[145]
[145]
[146]
[146]
[147]
[147]
[148]
[149]
[150]
[151]
[152]
[153]
[154]
[155]
[156]
[157]
[158]
[159]
[160]
[161]
[162]
[163]
[164]
[165]
[166]
[167]
[168]
[169]
[170]
[171]
Citations
Altmetric
Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有
京ICP备18024590号-1