Oxidation of silanes into silanols using water/air has attracted considerable attention. The known methods with no exception required a metal catalyst. Herein we report the first metal-free method: 2 mol% Rose Bengal as the catalyst, air (O2) as the oxidant, water as the additive and under visible light irradiation. While this method produces various silanols in a simple, cost-effective, efficient (92%–99% yields) and scalable fashion, its reaction mechanism is very different than the reported ones associated with metal catalysis.
the National Key R&D Program of China(2017YFA0505200)
the National Natural Science Foundation of China(21625104,21521091)
This work was supported by the National Key R&D Program of China (2017YFA0505200) and the National Natural Science Foundation of China (21625104, 21521091).
The authors declare that they have no conflict of interest.
Supporting Information The supporting information is available online at
[1] Ciamician G, Narayanam JMR, Stephenson CRJ, Chen JR, Hu XQ, Lu LQ, Xiao WJ, Lang X, Zhao J, Chen X, Fabry DC, Rueping M. Science, 1912, 36: 385-394 CrossRef PubMed ADS Google Scholar
[2] Nicewicz DA, MacMillan DWC, Feng Z, Zeng T, Xuan J, Liu Y, Lu L, Xiao WJ, Prier CK, Rankic DA, MacMillan DWC, Wang J, Nguyen TH, Zheng N, Zhao J, Wu W, Sun J, Guo S, Zeitler K, Ye P, Wang DH, Chen B, Meng QY, Tung CH, Wu LZ, Majek M, Jacobi von Wangelin A, Ravelli D, Fagnoni M, Albini A, Hari DP, Schroll P, K?nig B, Meyer AU, Slanina T, Yao CJ, K?nig B, Yang W, Yang S, Li P, Wang L, Liu M, Li Y, Yu L, Xu Q, Jiang X. Science, 2008, 322: 77-80 CrossRef PubMed ADS Google Scholar
[3] Chandrasekhar V, Boomishankar R, Nagendran S, Murugavel R, Voigt A, Walawalkar MG, Roesky HW, Denmark SE, Regens CS, Murugavel R, Voigt A, Walawalkar MG, Roesky HW. Chem Rev, 2004, 104: 5847-5910 CrossRef PubMed Google Scholar
[4]
Denmark
SE,
Regens
CS,
Denmark
SE.
Denmark S E, M H Ober.
[5] Tran NT, Min T, Franz AK, Schafer AG, Wieting JM, Mattson AE, Tran NT, Wilson SO, Franz AK. Chem Eur J, 2011, 17: 9897-9900 CrossRef PubMed Google Scholar
[6] Mewald M, Schiffner JA, Oestreich M, Mewald M, Schiffner JA, Oestreich M, Wang C, Ge H, Huang C, Chattopadhyay B, Gevorgyan V, Huang C, Ghavtadze N, Chattopadhyay B, Gevorgyan V. Angew Chem Int Ed, 2012, 51: 1763-1765 CrossRef PubMed Google Scholar
[7] Franz AK, Wilson SO. J Med Chem, 2013, 56: 388-405 CrossRef PubMed Google Scholar
[8] Tacke R, Schmid T, Hofmann M, Tolasch T, Francke W, Kim JK, Sieburth SMN. Organometallics, 2003, 22: 370-372 CrossRef Google Scholar
[9] Cella JA, Carpenter JC, Cho HM, Jeon SH, Lee HK, Kim JH, Park S, Choi MG, Lee ME. J Organomet Chem, 1994, 480: 23-26 CrossRef Google Scholar
[10] Sieburth SM, Mu W. J Org Chem, 1993, 58: 7584-7586 CrossRef Google Scholar
[11] Adam W, Mello R, Curci R, Adam W, Mello R, Curci R, Grabovskii SA, Kabal'nova NN, Shereshovets VV, Chatgilialoglu C, Asao N, Ishikawa Y, Hatakeyama N, Menggenbateer N, Yamamoto Y, Chen M, Zhang W, Inoue A, Asao N, Ishikawa Y, Hatakeyama N, Menggenbateer N, Yamamoto Y, Chen M, Zhang W, Inoue A, Mitsudome T, Noujima A, Mizugaki T, Jitsukawa K, Kaneda K, Ishimoto R, Kamata? K, Mizuno? N, Ishimoto R, Kamata? K, Mizuno? N, Chen Z, Zhang Q, Chen W, Dong J, Yao H, Zhang X, Tong X, Wang D, Peng Q, Chen C, He W, Li Y, Jeon M, Han J, Park J. Angew Chem Int Ed, 1990, 29: 890-891 CrossRef Google Scholar
[12] Yu M, Jing H, Liu X, Fu X. Organometallics, 2015, 34: 5754-5758 CrossRef Google Scholar
[13] Shen ZC, Yang P, Tang Y, Zhang MJ, Schroeder GM, He YH, Guan Z, Fan W, Yang Q, Xu F, Li P, Li X, Gu X, Li Y, Li P, Shi Q, Li P, Zhu X, Wang L, Ghogare AA, Greer A, Sun JG, Yang H, Li P, Zhang B. J Org Chem, 2016, 81: 309-317 CrossRef PubMed Google Scholar
[14] Tung CH, Wu LZ, Zhang LP, Chen B. Acc Chem Res, 2003, 36: 39-47 CrossRef PubMed Google Scholar
[15] Donkers RL, Workentin MS, Kotani H, Ohkubo K, Fukuzumi S, Carre?o MC, González-López M, Urbano A, Catir M, Kilic H, Nardello-Rataj V?, Aubry JM, Kazaz C, Ouannes C, Wilson T, Kotani H, Ohkubo K, Fukuzumi S, Klaper M, Linker T. J Am Chem Soc, 2004, 126: 1688-1698 CrossRef PubMed Google Scholar
[16] Cui H, Wei W, Yang D, Zhang Y, Zhao H, Wang L, Wang H, Rahaman R, Das S, Barman P. Green Chem, 2017, 19: 3520-3524 CrossRef Google Scholar
[17] Mader MM, Norrby PO, Rayment EJ, Mekareeya A, Summerhill N, Anderson EA. J Am Chem Soc, 2001, 123: 1970-1976 CrossRef Google Scholar
Figure 1
Proposed reaction mechanism (color online).
Scheme 1
Synthetic methods for silanols (color online).
Scheme 2
Controlled Experiments to Verify 1O2 (color online).
Entry | Catalyst | Solvent | Oxidants | Conversion/Yield (%)b) |
1 | Rose Bengal | THF | Air | 70/67 |
2 | Rose Bengal | THF | Air/H2O | >99/98 |
3 | Eosin B | THF | Air/H2O | <5/– |
4 | Eosin Y | THF | Air/H2O | <5/– |
5 | Fluorescein | THF | Air/H2O | <5/– |
6 | – | THF | Air/H2O | <5/– |
7c) | Rose Bengal | THF | Air/H2O | <5/– |
8d) | Rose Bengal | THF | Air/H2O | >99/97 |
9e) | Rose Bengal | THF | Air/H2O | >99/95 |
10f) | Rose Bengal | THF | Air/H2O | 47/43 |
11 | Rose Bengal | DME | Air/H2O | 90/86 |
12 | Rose Bengal | DMF | Air/H2O | 50/47 |
13 | Rose Bengal | DMA | Air/H2O | 13/10 |
14 | Rose Bengal | MeCN | Air/H2O | <5/– |
15g) | Rose Bengal | MeOH | Air/H2O | 60/53 |
16 | Rose Bengal | Acetone | Air/H2O | 77/72 |
17 | Rose Bengal | DMSO | Air/H2O | 55/51 |
18 | Rose Bengal | THF | N2/H2O | <5/– |
19 | Rose Bengal | Dry THF | O2 | 90/86h) |
20 | Rose Bengal | Dry THF | O2/H2O | >99/97 |
Reaction conditions unless otherwise stated: triphenysilane
98% | 78% | 97% | 99% |
99% (gram scale) | 95% | ? | |
97% | 92% | 97% | 99% |
81% | 98% | 98% | 97% |
97% | ? |
Standard conditions unless otherwise stated: silane
Entry | Time (h) | Conversion (%) | Ph3Si18OH in | Ph3Si16OH in |
1 | 0.3 | 2.7 | 33 | 67 |
2 | 1 | 5.8 | 66 | 34 |
3 | 6 | 71.5 | 65 | 35 |
4 | 12 | 100 | 67 | 33 |
Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有
京ICP备18024590号-1