Metal-free visible-light-mediated aerobic oxidation of silanes to silanols

logo

SCIENCE CHINA Chemistry, Volume 61, Issue 12: 1594-1599(2018) https://doi.org/10.1007/s11426-018-9289-9

Metal-free visible-light-mediated aerobic oxidation of silanes to silanols

More info
  • ReceivedMay 3, 2018
  • AcceptedMay 21, 2018
  • PublishedAug 2, 2018

Abstract

Oxidation of silanes into silanols using water/air has attracted considerable attention. The known methods with no exception required a metal catalyst. Herein we report the first metal-free method: 2 mol% Rose Bengal as the catalyst, air (O2) as the oxidant, water as the additive and under visible light irradiation. While this method produces various silanols in a simple, cost-effective, efficient (92%–99% yields) and scalable fashion, its reaction mechanism is very different than the reported ones associated with metal catalysis.


Funded by

the National Key R&D Program of China(2017YFA0505200)

the National Natural Science Foundation of China(21625104,21521091)


Acknowledgment

This work was supported by the National Key R&D Program of China (2017YFA0505200) and the National Natural Science Foundation of China (21625104, 21521091).


Interest statement

The authors declare that they have no conflict of interest.


Supplement

Supporting Information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Ciamician G, Narayanam JMR, Stephenson CRJ, Chen JR, Hu XQ, Lu LQ, Xiao WJ, Lang X, Zhao J, Chen X, Fabry DC, Rueping M. Science, 1912, 36: 385-394 CrossRef PubMed ADS Google Scholar

[2] Nicewicz DA, MacMillan DWC, Feng Z, Zeng T, Xuan J, Liu Y, Lu L, Xiao WJ, Prier CK, Rankic DA, MacMillan DWC, Wang J, Nguyen TH, Zheng N, Zhao J, Wu W, Sun J, Guo S, Zeitler K, Ye P, Wang DH, Chen B, Meng QY, Tung CH, Wu LZ, Majek M, Jacobi von Wangelin A, Ravelli D, Fagnoni M, Albini A, Hari DP, Schroll P, K?nig B, Meyer AU, Slanina T, Yao CJ, K?nig B, Yang W, Yang S, Li P, Wang L, Liu M, Li Y, Yu L, Xu Q, Jiang X. Science, 2008, 322: 77-80 CrossRef PubMed ADS Google Scholar

[3] Chandrasekhar V, Boomishankar R, Nagendran S, Murugavel R, Voigt A, Walawalkar MG, Roesky HW, Denmark SE, Regens CS, Murugavel R, Voigt A, Walawalkar MG, Roesky HW. Chem Rev, 2004, 104: 5847-5910 CrossRef PubMed Google Scholar

[4] Denmark SE, Regens CS, Denmark SE. Denmark S E, M H Ober. Aldrichim Acta, 2003, 36: 75--85. Google Scholar

[5] Tran NT, Min T, Franz AK, Schafer AG, Wieting JM, Mattson AE, Tran NT, Wilson SO, Franz AK. Chem Eur J, 2011, 17: 9897-9900 CrossRef PubMed Google Scholar

[6] Mewald M, Schiffner JA, Oestreich M, Mewald M, Schiffner JA, Oestreich M, Wang C, Ge H, Huang C, Chattopadhyay B, Gevorgyan V, Huang C, Ghavtadze N, Chattopadhyay B, Gevorgyan V. Angew Chem Int Ed, 2012, 51: 1763-1765 CrossRef PubMed Google Scholar

[7] Franz AK, Wilson SO. J Med Chem, 2013, 56: 388-405 CrossRef PubMed Google Scholar

[8] Tacke R, Schmid T, Hofmann M, Tolasch T, Francke W, Kim JK, Sieburth SMN. Organometallics, 2003, 22: 370-372 CrossRef Google Scholar

[9] Cella JA, Carpenter JC, Cho HM, Jeon SH, Lee HK, Kim JH, Park S, Choi MG, Lee ME. J Organomet Chem, 1994, 480: 23-26 CrossRef Google Scholar

[10] Sieburth SM, Mu W. J Org Chem, 1993, 58: 7584-7586 CrossRef Google Scholar

[11] Adam W, Mello R, Curci R, Adam W, Mello R, Curci R, Grabovskii SA, Kabal'nova NN, Shereshovets VV, Chatgilialoglu C, Asao N, Ishikawa Y, Hatakeyama N, Menggenbateer N, Yamamoto Y, Chen M, Zhang W, Inoue A, Asao N, Ishikawa Y, Hatakeyama N, Menggenbateer N, Yamamoto Y, Chen M, Zhang W, Inoue A, Mitsudome T, Noujima A, Mizugaki T, Jitsukawa K, Kaneda K, Ishimoto R, Kamata? K, Mizuno? N, Ishimoto R, Kamata? K, Mizuno? N, Chen Z, Zhang Q, Chen W, Dong J, Yao H, Zhang X, Tong X, Wang D, Peng Q, Chen C, He W, Li Y, Jeon M, Han J, Park J. Angew Chem Int Ed, 1990, 29: 890-891 CrossRef Google Scholar

[12] Yu M, Jing H, Liu X, Fu X. Organometallics, 2015, 34: 5754-5758 CrossRef Google Scholar

[13] Shen ZC, Yang P, Tang Y, Zhang MJ, Schroeder GM, He YH, Guan Z, Fan W, Yang Q, Xu F, Li P, Li X, Gu X, Li Y, Li P, Shi Q, Li P, Zhu X, Wang L, Ghogare AA, Greer A, Sun JG, Yang H, Li P, Zhang B. J Org Chem, 2016, 81: 309-317 CrossRef PubMed Google Scholar

[14] Tung CH, Wu LZ, Zhang LP, Chen B. Acc Chem Res, 2003, 36: 39-47 CrossRef PubMed Google Scholar

[15] Donkers RL, Workentin MS, Kotani H, Ohkubo K, Fukuzumi S, Carre?o MC, González-López M, Urbano A, Catir M, Kilic H, Nardello-Rataj V?, Aubry JM, Kazaz C, Ouannes C, Wilson T, Kotani H, Ohkubo K, Fukuzumi S, Klaper M, Linker T. J Am Chem Soc, 2004, 126: 1688-1698 CrossRef PubMed Google Scholar

[16] Cui H, Wei W, Yang D, Zhang Y, Zhao H, Wang L, Wang H, Rahaman R, Das S, Barman P. Green Chem, 2017, 19: 3520-3524 CrossRef Google Scholar

[17] Mader MM, Norrby PO, Rayment EJ, Mekareeya A, Summerhill N, Anderson EA. J Am Chem Soc, 2001, 123: 1970-1976 CrossRef Google Scholar

  • Figure 1

    Proposed reaction mechanism (color online).

  • Scheme 1

    Synthetic methods for silanols (color online).

  • Scheme 2

    Controlled Experiments to Verify 1O2 (color online).

  • Table 1   Table 1 Optimization of reaction conditionsa)

    Entry

    Catalyst

    Solvent

    Oxidants

    Conversion/Yield (%)b)

    1

    Rose Bengal

    THF

    Air

    70/67

    2

    Rose Bengal

    THF

    Air/H2O

    >99/98

    3

    Eosin B

    THF

    Air/H2O

    <5/–

    4

    Eosin Y

    THF

    Air/H2O

    <5/–

    5

    Fluorescein

    THF

    Air/H2O

    <5/–

    6

    THF

    Air/H2O

    <5/–

    7c)

    Rose Bengal

    THF

    Air/H2O

    <5/–

    8d)

    Rose Bengal

    THF

    Air/H2O

    >99/97

    9e)

    Rose Bengal

    THF

    Air/H2O

    >99/95

    10f)

    Rose Bengal

    THF

    Air/H2O

    47/43

    11

    Rose Bengal

    DME

    Air/H2O

    90/86

    12

    Rose Bengal

    DMF

    Air/H2O

    50/47

    13

    Rose Bengal

    DMA

    Air/H2O

    13/10

    14

    Rose Bengal

    MeCN

    Air/H2O

    <5/–

    15g)

    Rose Bengal

    MeOH

    Air/H2O

    60/53

    16

    Rose Bengal

    Acetone

    Air/H2O

    77/72

    17

    Rose Bengal

    DMSO

    Air/H2O

    55/51

    18

    Rose Bengal

    THF

    N2/H2O

    <5/–

    19

    Rose Bengal

    Dry THF

    O2

    90/86h)

    20

    Rose Bengal

    Dry THF

    O2/H2O

    >99/97

    Reaction conditions unless otherwise stated: triphenysilane 1a (0.4?mmol), H2O (50?μL), photocatalyst (2 mol%), otherwise noted, solvent (2?mL) without anhydrous treatment, using a 200?W white LED as the visible light source, 12?h. b) Yields after chromatography. c) Reaction performed in dark. d) 5 mol%, e) 10 mol% and f) 100 mol% catalyst was used, respectively. g) Alcoholysis product was isolated. h) The reaction time was 72?h.

  • Table 2   Table 2 Substrate scope of the organocatalytic oxidation of silane a,b)

    2a

    2b

    2c

    2d

    98% (12?h)

    78% (12?h)

    97% (12?h)

    99% (12?h)

    99% (gram scale)

    95% (24?h)

    ?

    2e

    2f

    2g

    2h

    97% (12?h)

    92% (12?h)

    97% (12?h)

    99% (12?h)

    2i

    2j

    2k

    2m

    81% (12?h)

    98% (12?h)

    98% (12?h)

    97% (12?h)

    97% (24?h)

    ?

    Standard conditions unless otherwise stated: silane (0.4?mmol), Rose Bengal (2.0 mol%), H2O (50?μL),THF (2?mL), 200?W white LED, air, r.t., 12?h or 24?h. b) Isolated yields.

  • Table 3   Table 3 Controlled Experiments of Reaction with H218O and 16O2a)

    Entry

    Time (h)

    Conversion

    (%)

    Ph3Si18OH

    in 2a (%)b)

    Ph3Si16OH

    in 2a (%)b)

    1

    0.3

    2.7

    33

    67

    2

    1

    5.8

    66

    34

    3

    6

    71.5

    65

    35

    4

    12

    100

    67

    33

    Reaction conditions: triphenysilane 1a(0.4?mmol), H218O (50?μL), Rose Bengal (2 mol%), dry THF (2?mL), 200?W white LED, reacting in a freshly dried Schlenk tube under the 16O2 atmosphere. b) The relative amount of Ph3Si18OH and Ph3Si16OH in 2a was analyzed by GC-MS.

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1