Controlling disorder in host lattice by hetero-valence ion doping to manipulate luminescence in spinel solid solution phosphors

logo

SCIENCE CHINA Chemistry, Volume 61, Issue 12: 1624-1629(2018) https://doi.org/10.1007/s11426-018-9311-0

Controlling disorder in host lattice by hetero-valence ion doping to manipulate luminescence in spinel solid solution phosphors

More info
  • ReceivedMar 28, 2018
  • AcceptedJun 11, 2018
  • PublishedAug 16, 2018

Abstract

Phosphor materials have been rapidly developed in the past decades. Developing phosphors with desired properties including strong luminescence intensity and long lifetime has attracted widespread attention. Herein, we show that hetero-valence ion doping can serve as a potent strategy to manipulate luminescence in persistent phosphors by controlling disorder in the host lattice. Specifically, spinel phosphor Zn(Ga1?xZnx)(Ga1?xGex)O4:Cr is developed by doping ZnGa2O4:Cr with tetravalent Ge4+. Compared to the original ZnGa2O4:Cr, the doped Zn(Ga1?xZnx)(Ga1?xGex)O4:Cr possesses significantly enhanced persistent luminescence intensity and prolonged decay time. Rietveld refinements show that Ge4+ enters into octahedral sites to substitute Ga3+, which leads to the co-substitution of Ga3+ by Zn2+ for charge compensation. The hetero-valence substitution of Ga3+ by Ge4+ and Zn2+ enriches the charged defects in Zn(Ga1?xZnx)(Ga1?xGex)O4:Cr, making it possible to trap large amounts of charge carriers within the defects during excitation. Electron paramagnetic resonance measurement further confirms that the amount of Cr3+ neighboring charged defects increases with Ge4+ doping. Thus charge carriers released from defects can readily combine with the neighboring Cr3+ to produce bright persistent luminescence after excitation ceases. The hetero-valence ion doping strategy can further be employed to develop many other phosphors and contributes to lighting, photocatalysis and bioimaging.


Funded by

the National Key R&D Program of China(2017YFA0208000)

the National Natural Science Foundation of China(21675120,21325104)

and the CAS/SAFEA International Partnership Program for Creative Research Teams.


Acknowledgment

This work was supported by the National Key R&D Program of China (2017YFA0208000), the National Natural Science Foundation of China (21675120, 21325104), and the CAS/SAFEA International Partnership Program for Creative Research Teams. We sincerely thank Prof. Zhenxing Wang from Huazhong University of Science and Technology for his assistance in EPR simulation. The EPR simulation is conducted with the SPIN developed by Andrew Ozarowski in the National High Magnetic Field Laboratory, USA.


Interest statement

The authors declare that they have no conflict of interest.


Contributions statement

These authors contributed equally to this work.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Zhu X, Su Q, Feng W, Li F. Chem Soc Rev, 2017, 46: 1025-1039 CrossRef PubMed Google Scholar

[2] Wu BY, Wang HF, Chen JT, Yan XP. J Am Chem Soc, 2011, 133: 686-688 CrossRef PubMed Google Scholar

[3] Maldiney T, Bessière A, Seguin J, Teston E, Sharma SK, Viana B, Bos AJJ, Dorenbos P, Bessodes M, Gourier D, Scherman D, Richard C. Nat Mater, 2014, 13: 418-426 CrossRef PubMed ADS Google Scholar

[4] Wang W, Cheng Z, Yang P, Hou Z, Li C, Li G, Dai Y, Lin J. Adv Funct Mater, 2011, 21: 456-463 CrossRef Google Scholar

[5] Bielec P, Schnick W. Angew Chem Int Ed, 2017, 56: 4810-4813 CrossRef PubMed Google Scholar

[6] Lin CC, Tsai YT, Johnston HE, Fang MH, Yu F, Zhou W, Whitfield P, Li Y, Wang J, Liu RS, Attfield JP. J Am Chem Soc, 2017, 139: 11766-11770 CrossRef PubMed Google Scholar

[7] Zhou J, Liu Q, Feng W, Sun Y, Li F. Chem Rev, 2015, 115: 395-465 CrossRef PubMed Google Scholar

[8] Dong H, Sun LD, Wang YF, Ke J, Si R, Xiao JW, Lyu GM, Shi S, Yan CH. J Am Chem Soc, 2015, 137: 6569-6576 CrossRef PubMed Google Scholar

[9] Huang L, Zhao Y, Zhang H, Huang K, Yang J, Han G. Angew Chem Int Ed, 2017, 56: 14400-14404 CrossRef PubMed Google Scholar

[10] Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S. Science, 2005, 307: 538-544 CrossRef PubMed ADS Google Scholar

[11] Wu P, Yan XP. Chem Soc Rev, 2013, 42: 5489-5521 CrossRef PubMed Google Scholar

[12] Xu G, Zeng S, Zhang B, Swihart MT, Yong KT, Prasad PN. Chem Rev, 2016, 116: 12234-12327 CrossRef PubMed Google Scholar

[13] Wei Y, Deng X, Xie Z, Cai X, Liang S, Ma P, Hou Z, Cheng Z, Lin J. Adv Funct Mater, 2017, 27: 1703535 CrossRef Google Scholar

[14] Zou S, Liu Y, Li J, Liu C, Feng R, Jiang F, Li Y, Song J, Zeng H, Hong M, Chen X. J Am Chem Soc, 2017, 139: 11443-11450 CrossRef PubMed Google Scholar

[15] Wu SQ, Yang CX, Yan XP. Adv Funct Mater, 2017, 27: 1604992 CrossRef Google Scholar

[16] Li Z, Zhang Y, Wu X, Huang L, Li D, Fan W, Han G. J Am Chem Soc, 2015, 137: 5304-5307 CrossRef PubMed Google Scholar

[17] Huang B. Inorg Chem, 2015, 54: 11423-11440 CrossRef PubMed Google Scholar

[18] Huang B, Sun M. Phys Chem Chem Phys, 2017, 19: 9457-9469 CrossRef PubMed ADS Google Scholar

[19] Li Z, Zhang Y, Wu X, Wu X, Maudgal R, Zhang H, Han G. Adv Sci, 2015, 2: 1500001 CrossRef PubMed Google Scholar

[20] Song L, Li PP, Yang W, Lin XH, Liang H, Chen XF, Liu G, Li J, Yang HH. Adv Funct Mater, 2018, 28: 1707496 CrossRef Google Scholar

[21] Zhou Z, Zheng W, Kong J, Liu Y, Huang P, Zhou S, Chen Z, Shi J, Chen X. Nanoscale, 2017, 9: 6846-6853 CrossRef PubMed Google Scholar

[22] Wang J, Ma Q, Hu XX, Liu H, Zheng W, Chen X, Yuan Q, Tan W. ACS Nano, 2017, 11: 8010-8017 CrossRef Google Scholar

[23] Song L, Lin XH, Song XR, Chen S, Chen XF, Li J, Yang HH. Nanoscale, 2017, 9: 2718-2722 CrossRef PubMed Google Scholar

[24] Gai S, Li C, Yang P, Lin J. Chem Rev, 2014, 114: 2343-2389 CrossRef PubMed Google Scholar

[25] Qin X, Liu X, Huang W, Bettinelli M, Liu X. Chem Rev, 2017, 117: 4488-4527 CrossRef PubMed Google Scholar

[26] Lécuyer T, Teston E, Ramirez-Garcia G, Maldiney T, Viana B, Seguin J, Mignet N, Scherman D, Richard C. Theranostics, 2016, 6: 2488-2523 CrossRef PubMed Google Scholar

[27] Wang J, Ma Q, Wang Y, Shen H, Yuan Q. Nanoscale, 2017, 9: 6204-6218 CrossRef PubMed Google Scholar

[28] Xia Z, Ma C, Molokeev MS, Liu Q, Rickert K, Poeppelmeier KR. J Am Chem Soc, 2015, 137: 12494-12497 CrossRef PubMed Google Scholar

[29] Punjabi A, Wu X, Tokatli-Apollon A, El-Rifai M, Lee H, Zhang Y, Wang C, Liu Z, Chan EM, Duan C, Han G. ACS Nano, 2014, 8: 10621-10630 CrossRef PubMed Google Scholar

[30] Shang M, Li C, Lin J. Chem Soc Rev, 2014, 43: 1372-1386 CrossRef PubMed Google Scholar

[31] Danielson E, Devenney M, Giaquinta DM, Golden JH, Haushalter RC, McFarland EW, Poojary DM, Reaves CM, Weinberg WH, Wu XD. Science, 1998, 279: 837-839 CrossRef ADS Google Scholar

[32] Park WB, Singh SP, Sohn KS. J Am Chem Soc, 2014, 136: 2363-2373 CrossRef PubMed Google Scholar

[33] Han S, Qin X, An Z, Zhu Y, Liang L, Han Y, Huang W, Liu X. Nat Commun, 2016, 7: 13059 CrossRef PubMed ADS Google Scholar

[34] Tsai YT, Chiang CY, Zhou W, Lee JF, Sheu HS, Liu RS. J Am Chem Soc, 2015, 137: 8936-8939 CrossRef PubMed Google Scholar

[35] De Trizio L, Manna L. Chem Rev, 2016, 116: 10852-10887 CrossRef PubMed Google Scholar

[36] Chen D, Wang Y. Nanoscale, 2013, 5: 4621-4637 CrossRef PubMed ADS Google Scholar

[37] Dong H, Sun LD, Feng W, Gu Y, Li F, Yan CH. ACS Nano, 2017, 11: 3289-3297 CrossRef Google Scholar

[38] Huang B, Peng D, Pan C. Phys Chem Chem Phys, 2017, 19: 1190-1208 CrossRef PubMed ADS Google Scholar

[39] Deng R, Qin F, Chen R, Huang W, Hong M, Liu X. Nat Nanotech, 2015, 10: 237-242 CrossRef PubMed ADS Google Scholar

[40] Shen S, Wang Q. Chem Mater, 2013, 25: 1166-1178 CrossRef Google Scholar

[41] Liu Y, Zhang X, Hao Z, Wang X, Zhang J. Chem Commun, 2011, 47: 10677-10679 CrossRef PubMed Google Scholar

[42] He H, Zhang Y, Pan Q, Wu G, Dong G, Qiu J. J Mater Chem C, 2015, 3: 5419-5429 CrossRef Google Scholar

[43] Liu J, Lian H, Shi C. Opt Mater, 2007, 29: 1591-1594 CrossRef ADS Google Scholar

[44] Zheng W, Zhou S, Chen Z, Hu P, Liu Y, Tu D, Zhu H, Li R, Huang M, Chen X. Angew Chem Int Ed, 2013, 52: 6671-6676 CrossRef PubMed Google Scholar

[45] Dou Q, Zhang Y. Langmuir, 2011, 27: 13236-13241 CrossRef PubMed Google Scholar

[46] Abdukayum A, Chen JT, Zhao Q, Yan XP. J Am Chem Soc, 2013, 135: 14125-14133 CrossRef PubMed Google Scholar

[47] Gourier D, Bessière A, Sharma SK, Binet L, Viana B, Basavaraju N, Priolkar KR. J Phys Chem Solids, 2014, 75: 826-837 CrossRef ADS Google Scholar

[48] Huang B. Phys Chem Chem Phys, 2016, 18: 25946-25974 CrossRef PubMed ADS Google Scholar

[49] Manual U, TOPAS V. General Profile and Structure Analysis Software for Powder Diffraction Data. Karlsruhe:, 2000. Google Scholar

[50] Hill RJ, Craig JR, Gibbs GV. Phys Chem Miner, 1979, 4: 317-339 CrossRef ADS Google Scholar

  • Figure 1

    (a) TEM images of ZnGa2O4:Cr, (b) Zn1.1Ga1.8Ge0.1O4:Cr and (c) Zn1.2Ga1.6Ge0.2O4:Cr nanoparticles. (d) Photoluminescence spectra of Zn(Ga1?xZnx)(Ga1?xGex)O4:Cr nanoparticles. N2: N2 zero photon line. S-PSB: Stokes phonon sideband line. (e) Luminescence decay curves in Zn(Ga1?xZnx)(Ga1?xGex)O4:Cr nanoparticles. (f) Luminescence decay images of ZnGa2O4:Cr and Zn1.1Ga1.8Ge0.1O4:Cr colloid dispersion (1?mg/mL) after excitation with a LED (color online).

  • Figure 2

    (a) Rietveld refinement of ZnGa2O4:Cr. (b) Schematic illustration of ZnGa2O4:Cr unit cell. (c) Rietveld refinement of Zn1.1Ga1.8Ge0.1O4:Cr. (d) Schematic illustration of Zn1.1Ga1.8Ge0.1O4:Cr unit cell. (e) Rietveld refinement of Zn1.2Ga1.6Ge0.2O4:Cr. (f) Schematic illustration of Zn1.2Ga1.6Ge0.2O4:Cr unit cell (color online).

  • Figure 3

    (a) EPR spectra of Zn(Ga1?xZnx)(Ga1?xGex)O4:Cr. (b) Schematic illustration of charged defects increasing in Zn(Ga1?xZnx)(Ga1?xGex)O4:Cr induced by hetero-valence ion doping (color online).

  • Table 1   Table 1 The luminescence intensity of decay images of ZnGa2O4:Cr and Zn1.1Ga1.8Ge0.1O4:Cr colloid dispersion shown in Figure 1(f)

    1st activation (104)

    2nd activation (104)

    3rd activation (104)

    x=0

    x=0.1

    x=0

    x=0.1

    x=0

    x=0.1

    1?min

    29.8

    50.9

    31.3

    53.7

    34.5

    60.3

    3?min

    12.6

    20.6

    12.5

    21.5

    13.1

    22.5

    5?min

    7.92

    12.6

    8.29

    13.8

    8.38

    14.3

    10?min

    4.01

    6.63

    4.05

    6.67

    4.07

    6.90

  • Table 2   Table 2 Charged defects in Zn(Ga1?xZnx)(Ga1?xGex)O4:Cr. GeoGa:Ge4+ ion in the octahedral site. Zn′Ga:Zn2+ ion in the octahedral site. GaoZn:Ga3+ ion in the tetrahedral site. The negative and positive charges are represented by dash and dot respectively

    Composition (x)

    GeoGa

    Zn′Ga

    GaoZn

    0

    0

    0.03

    0.03

    0.1

    0.1

    0.18

    0.08

    0.2

    0.2

    0.38

    0.18

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1