Phosphor materials have been rapidly developed in the past decades. Developing phosphors with desired properties including strong luminescence intensity and long lifetime has attracted widespread attention. Herein, we show that hetero-valence ion doping can serve as a potent strategy to manipulate luminescence in persistent phosphors by controlling disorder in the host lattice. Specifically, spinel phosphor Zn(Ga1?
the National Key R&D Program of China(2017YFA0208000)
the National Natural Science Foundation of China(21675120,21325104)
and the CAS/SAFEA International Partnership Program for Creative Research Teams.
This work was supported by the National Key R&D Program of China (2017YFA0208000), the National Natural Science Foundation of China (21675120, 21325104), and the CAS/SAFEA International Partnership Program for Creative Research Teams. We sincerely thank Prof. Zhenxing Wang from Huazhong University of Science and Technology for his assistance in EPR simulation. The EPR simulation is conducted with the SPIN developed by Andrew Ozarowski in the National High Magnetic Field Laboratory, USA.
The authors declare that they have no conflict of interest.
These authors contributed equally to this work.
The supporting information is available online at
[1] Zhu X, Su Q, Feng W, Li F. Chem Soc Rev, 2017, 46: 1025-1039 CrossRef PubMed Google Scholar
[2] Wu BY, Wang HF, Chen JT, Yan XP. J Am Chem Soc, 2011, 133: 686-688 CrossRef PubMed Google Scholar
[3] Maldiney T, Bessière A, Seguin J, Teston E, Sharma SK, Viana B, Bos AJJ, Dorenbos P, Bessodes M, Gourier D, Scherman D, Richard C. Nat Mater, 2014, 13: 418-426 CrossRef PubMed ADS Google Scholar
[4] Wang W, Cheng Z, Yang P, Hou Z, Li C, Li G, Dai Y, Lin J. Adv Funct Mater, 2011, 21: 456-463 CrossRef Google Scholar
[5] Bielec P, Schnick W. Angew Chem Int Ed, 2017, 56: 4810-4813 CrossRef PubMed Google Scholar
[6] Lin CC, Tsai YT, Johnston HE, Fang MH, Yu F, Zhou W, Whitfield P, Li Y, Wang J, Liu RS, Attfield JP. J Am Chem Soc, 2017, 139: 11766-11770 CrossRef PubMed Google Scholar
[7] Zhou J, Liu Q, Feng W, Sun Y, Li F. Chem Rev, 2015, 115: 395-465 CrossRef PubMed Google Scholar
[8] Dong H, Sun LD, Wang YF, Ke J, Si R, Xiao JW, Lyu GM, Shi S, Yan CH. J Am Chem Soc, 2015, 137: 6569-6576 CrossRef PubMed Google Scholar
[9] Huang L, Zhao Y, Zhang H, Huang K, Yang J, Han G. Angew Chem Int Ed, 2017, 56: 14400-14404 CrossRef PubMed Google Scholar
[10] Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S. Science, 2005, 307: 538-544 CrossRef PubMed ADS Google Scholar
[11] Wu P, Yan XP. Chem Soc Rev, 2013, 42: 5489-5521 CrossRef PubMed Google Scholar
[12] Xu G, Zeng S, Zhang B, Swihart MT, Yong KT, Prasad PN. Chem Rev, 2016, 116: 12234-12327 CrossRef PubMed Google Scholar
[13] Wei Y, Deng X, Xie Z, Cai X, Liang S, Ma P, Hou Z, Cheng Z, Lin J. Adv Funct Mater, 2017, 27: 1703535 CrossRef Google Scholar
[14] Zou S, Liu Y, Li J, Liu C, Feng R, Jiang F, Li Y, Song J, Zeng H, Hong M, Chen X. J Am Chem Soc, 2017, 139: 11443-11450 CrossRef PubMed Google Scholar
[15] Wu SQ, Yang CX, Yan XP. Adv Funct Mater, 2017, 27: 1604992 CrossRef Google Scholar
[16] Li Z, Zhang Y, Wu X, Huang L, Li D, Fan W, Han G. J Am Chem Soc, 2015, 137: 5304-5307 CrossRef PubMed Google Scholar
[17] Huang B. Inorg Chem, 2015, 54: 11423-11440 CrossRef PubMed Google Scholar
[18] Huang B, Sun M. Phys Chem Chem Phys, 2017, 19: 9457-9469 CrossRef PubMed ADS Google Scholar
[19] Li Z, Zhang Y, Wu X, Wu X, Maudgal R, Zhang H, Han G. Adv Sci, 2015, 2: 1500001 CrossRef PubMed Google Scholar
[20] Song L, Li PP, Yang W, Lin XH, Liang H, Chen XF, Liu G, Li J, Yang HH. Adv Funct Mater, 2018, 28: 1707496 CrossRef Google Scholar
[21] Zhou Z, Zheng W, Kong J, Liu Y, Huang P, Zhou S, Chen Z, Shi J, Chen X. Nanoscale, 2017, 9: 6846-6853 CrossRef PubMed Google Scholar
[22] Wang J, Ma Q, Hu XX, Liu H, Zheng W, Chen X, Yuan Q, Tan W. ACS Nano, 2017, 11: 8010-8017 CrossRef Google Scholar
[23] Song L, Lin XH, Song XR, Chen S, Chen XF, Li J, Yang HH. Nanoscale, 2017, 9: 2718-2722 CrossRef PubMed Google Scholar
[24] Gai S, Li C, Yang P, Lin J. Chem Rev, 2014, 114: 2343-2389 CrossRef PubMed Google Scholar
[25] Qin X, Liu X, Huang W, Bettinelli M, Liu X. Chem Rev, 2017, 117: 4488-4527 CrossRef PubMed Google Scholar
[26] Lécuyer T, Teston E, Ramirez-Garcia G, Maldiney T, Viana B, Seguin J, Mignet N, Scherman D, Richard C. Theranostics, 2016, 6: 2488-2523 CrossRef PubMed Google Scholar
[27] Wang J, Ma Q, Wang Y, Shen H, Yuan Q. Nanoscale, 2017, 9: 6204-6218 CrossRef PubMed Google Scholar
[28] Xia Z, Ma C, Molokeev MS, Liu Q, Rickert K, Poeppelmeier KR. J Am Chem Soc, 2015, 137: 12494-12497 CrossRef PubMed Google Scholar
[29] Punjabi A, Wu X, Tokatli-Apollon A, El-Rifai M, Lee H, Zhang Y, Wang C, Liu Z, Chan EM, Duan C, Han G. ACS Nano, 2014, 8: 10621-10630 CrossRef PubMed Google Scholar
[30] Shang M, Li C, Lin J. Chem Soc Rev, 2014, 43: 1372-1386 CrossRef PubMed Google Scholar
[31] Danielson E, Devenney M, Giaquinta DM, Golden JH, Haushalter RC, McFarland EW, Poojary DM, Reaves CM, Weinberg WH, Wu XD. Science, 1998, 279: 837-839 CrossRef ADS Google Scholar
[32] Park WB, Singh SP, Sohn KS. J Am Chem Soc, 2014, 136: 2363-2373 CrossRef PubMed Google Scholar
[33] Han S, Qin X, An Z, Zhu Y, Liang L, Han Y, Huang W, Liu X. Nat Commun, 2016, 7: 13059 CrossRef PubMed ADS Google Scholar
[34] Tsai YT, Chiang CY, Zhou W, Lee JF, Sheu HS, Liu RS. J Am Chem Soc, 2015, 137: 8936-8939 CrossRef PubMed Google Scholar
[35] De Trizio L, Manna L. Chem Rev, 2016, 116: 10852-10887 CrossRef PubMed Google Scholar
[36] Chen D, Wang Y. Nanoscale, 2013, 5: 4621-4637 CrossRef PubMed ADS Google Scholar
[37] Dong H, Sun LD, Feng W, Gu Y, Li F, Yan CH. ACS Nano, 2017, 11: 3289-3297 CrossRef Google Scholar
[38] Huang B, Peng D, Pan C. Phys Chem Chem Phys, 2017, 19: 1190-1208 CrossRef PubMed ADS Google Scholar
[39] Deng R, Qin F, Chen R, Huang W, Hong M, Liu X. Nat Nanotech, 2015, 10: 237-242 CrossRef PubMed ADS Google Scholar
[40] Shen S, Wang Q. Chem Mater, 2013, 25: 1166-1178 CrossRef Google Scholar
[41] Liu Y, Zhang X, Hao Z, Wang X, Zhang J. Chem Commun, 2011, 47: 10677-10679 CrossRef PubMed Google Scholar
[42] He H, Zhang Y, Pan Q, Wu G, Dong G, Qiu J. J Mater Chem C, 2015, 3: 5419-5429 CrossRef Google Scholar
[43] Liu J, Lian H, Shi C. Opt Mater, 2007, 29: 1591-1594 CrossRef ADS Google Scholar
[44] Zheng W, Zhou S, Chen Z, Hu P, Liu Y, Tu D, Zhu H, Li R, Huang M, Chen X. Angew Chem Int Ed, 2013, 52: 6671-6676 CrossRef PubMed Google Scholar
[45] Dou Q, Zhang Y. Langmuir, 2011, 27: 13236-13241 CrossRef PubMed Google Scholar
[46] Abdukayum A, Chen JT, Zhao Q, Yan XP. J Am Chem Soc, 2013, 135: 14125-14133 CrossRef PubMed Google Scholar
[47] Gourier D, Bessière A, Sharma SK, Binet L, Viana B, Basavaraju N, Priolkar KR. J Phys Chem Solids, 2014, 75: 826-837 CrossRef ADS Google Scholar
[48] Huang B. Phys Chem Chem Phys, 2016, 18: 25946-25974 CrossRef PubMed ADS Google Scholar
[49]
Manual U, TOPAS V.
[50] Hill RJ, Craig JR, Gibbs GV. Phys Chem Miner, 1979, 4: 317-339 CrossRef ADS Google Scholar
Figure 1
(a) TEM images of ZnGa2O4:Cr, (b) Zn1.1Ga1.8Ge0.1O4:Cr and (c) Zn1.2Ga1.6Ge0.2O4:Cr nanoparticles. (d) Photoluminescence spectra of
Figure 2
(a) Rietveld refinement of ZnGa2O4:Cr. (b) Schematic illustration of ZnGa2O4:Cr unit cell. (c) Rietveld refinement of Zn1.1Ga1.8Ge0.1O4:Cr. (d) Schematic illustration of Zn1.1Ga1.8Ge0.1O4:Cr unit cell. (e) Rietveld refinement of Zn1.2Ga1.6Ge0.2O4:Cr. (f) Schematic illustration of Zn1.2Ga1.6Ge0.2O4:Cr unit cell (color online).
Figure 3
(a) EPR spectra of Zn(Ga1?
1st activation (104) | 2nd activation (104) | 3rd activation (104) | ||||
29.8 | 50.9 | 31.3 | 53.7 | 34.5 | 60.3 | |
12.6 | 20.6 | 12.5 | 21.5 | 13.1 | 22.5 | |
7.92 | 12.6 | 8.29 | 13.8 | 8.38 | 14.3 | |
4.01 | 6.63 | 4.05 | 6.67 | 4.07 | 6.90 |
Composition ( | GeoGa | Zn′Ga | GaoZn |
0 | 0 | 0.03 | 0.03 |
0.1 | 0.1 | 0.18 | 0.08 |
0.2 | 0.2 | 0.38 | 0.18 |
Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有
京ICP备18024590号-1